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PREFACE

There seems to have been published, up to the present time, no English-
language volume in which an elementary introduction to the caleulus of
variations is followed by extensive application of the subject to problems
of physics and theoretical engineering, The present volume is offered as
partial fulfillment of the need for such a book. Thus its c¢hief purpose is
twofold: O

(i) To provide for the senior or first-year graduate student in shgthc-
matics, science, or engineering an introduction to the ideas and tebhntques
of the calculus of variations. (The material of the first seven chapters—
with selected topics from the later chapters—has been used\several times
as the subject matter of a 10-week course in the Matherpétics Department
at Stanford University.) \%

(ii) To illustrate the application of the caleulugobvariations in several
fields outside the realm of pure mathcmaties{" (By far the greater
emphasis is placed upon this second aspect; of the book’s purpose.)

The range of topics considered may be determined at a glance in the
table of contents. Mention here of §mﬁé of the more significant omis-
sions may be pertinent: ONY

The vague, mechanical “8§ method” is avoided throughout. Thus,
while no advantage is taken of/a,fometimes convenient shorthand tactic,
there is climinated a source(of confusion which often grips the careful
student when confronted Fith its use.

No attempt is made'to treat problems of sufficiency or existence: no
consideration is takeén®df the “second variation” or of the conditions of
Legendre, Jacobifand Weierstrass. Besides being outside the scope of
the chief aimfgif..this book, these matiers are excellently treated in the
volumes of Bolza and Bliss listed in the Bibliography.,

Expar;sipﬁ' theorems for the eigenfunctions agsociated with eertain
boun@ry—value problems are stated without proof. The proofs, heyond
the scope of this volume, can be constructed, in most instances, on the
basis of the theory of integral equations.

Space limitations prevent inclusion of such topics as perturbation
theory, heat flow, hydrodynamics, torsion and buckling of bars,
Schwinger’s treatment of atomic scattering, and others. However, the
reader who has mastered the essence of the material ineluded should have
little difficulty in applying the calculus of variations to most of the
subjects which have been squeczed out.
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T4 is hardly necessary to mention the debt I owe to nearly all the works
mentioned in the Bibliography; Courant-Hilbert has been especialiy
belpful. In the early stages of the work, comments from my former
students Gordon Kent and Peter Szegé were useful. Occasional chats
with eolleagues in the Stanford Mathematics Department were simi-
larly helpful. I owe a tremendous debt of gratitude to my wife,
Elizaheth B. Weinstock, whose keen critical faculty is responsible for
several important corrective changes in the text, who worked out nearly
all the exercises, who did all the typing of the final draft, and whose
complete companionship-in-effort has made the writing of thishook
happy experience. A L
ROBER‘I‘J\\{BI}JSTOCK
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CHAPTER 1
INTRODUCTION

=[50 @) i W

is a well-defined quantity—a number—when #, and #, have '{iéﬁm'te
numerical values, when the integrand f is given as a fuqctiﬁn of the
arguments z, y, (dy/de), and when y is given as a Junctiora 6f . The
“first"” problem of the ealeulus of variations involves cémparison of the
various values assumed by (1) when different choiceS’g\)f ¢ as & function
of z are substituted into the integrand of (1). What is sought, specifi-
cally, is the particular function y = y(x) that‘gb}eé ta (1) its mingmum
(or mazimum) value. Explicit examples of this\t¥pe of problem are given
detailed treatment in Chap. 3. These inelude the probiems of “the
shortest distance between two points ong given surface,” “the curve of
quickest descent betwecn two points,\ahd ““the surface of revolution of
minimum avea.” QY

Generalization of the first problem is effected in many directions. For
example, the integrand of (1l\ﬁ1ay be replaced by a function of several
dependent vartables, with\r?p’ect to which a minimum (or maximum) of
the doefinile integral is souht. Further, the functions with respect to
which the minimization ¥or maximization) is carried out may be required
bo satisfy certain’m:b\sidjary conditions. Explicit examples of various
aspeets of thesga\’géneralizations zre handled in Chaps. 3 and 4. An
important spe{\igﬂ case is the problem of “the maximum area hounded
by a closed, ‘g::urve of given perimeter.”

Anotherfine along which generalization is pursued is the replacement
of {1 ”B}r" & multiple integral whose minimum (or maximum) is sought
with respeet to one or more functions of the independent variables of
integration. Thus, for example, we seek to minimize the double integral

. dw dw .
jff (.t.,-y,w, 3% -65) dx dy, (2)
D

carried out over a fixed domain I of the zy plane, with respect to func-
tions w = w(x,y). Such problems are dealt with in the opening sections
of Chaps. 7 and 9.

The definite integral

1



2 CALCULUS OF VARIATIONS

The techniques of solving the problems of minimizing (or maximizing)
(1), (2), and related definite integrals are intimately eonnected with the
problems of maxime and minima that are encountered in the elementary
differential calculus. If, far example, we seek to determine the values
for which the function y = ¢() achieves a minimum (or maximum), we
form the derivative (dy/dz) = ¢'(z), set ¢’(z) = 0, and solve for 2. The
roots of this equation—the only values of x for which y = g(z) can possi-
bly achieve a minimum' {or maximum)-—do not, however, necessarily
designate the locations of minima (or even of maxima). The condition
¢'(z) = 0 is merely a necessary condition for a minimum (or mgximum};
conditions of sufficiency involve derivatives of higher order than\the first.

The vanishing of g'(z) for a given value of = implies merely thati the curve
representing ¥ = g{x) has a horizontal tangent at that whlue of z. A
horizontal tangent may imply one of the three circumgtances: maximum,
minimum, or horizontal infleetion; we call a,ny\ gie of the three an
extremum of ¥ = g(x). X

The treatment of many of the problems of the caleulus of variations in
this volume is analogous to the treatment’of maximum and minimum
problems through the use of the firgty derivative only; quite often we
merely derive a set of necessary condltgons for a minimum {or maximum})
and rely upon geometrie or physicalintuition to establish the applicability
of our solution. In other caseg.dur interest lies only in the attainment of
an extremum; in these it 1s~1mmater1al whether we have a maximum,
mipimum, or a condition.&halegous to a horizontal inflection in the ele-
mentary case. The me‘tl;\lods involved in establishing the conditions suf-
ﬁcz’ent for a minimum\(or maximum)--and in proving the existence of a
minimum {or magimum)—are extremely profound and intricate; such
mvesmgatmns are/ found elsewhere in the literature.?

The chief/purpose of the present work is to illustrate the application
of the cgledllis of variations in several fields outside the realm of pure
mathembtics, Such applications are found in the chapters following
Cha{p %4, By no means can the treatment here of any special field he
ceonsidered exhaustive in its relatlonshlp to the calculus of variations;
edch of several of the later chapters is amenable to expansion to the
length of a volume the size of the present one,

The reader is expected to have as a part of his (or her) permanent
knowledge most of the concepts and techniques learned in a first-year
calculus course, including a smattering of ordinary differential equations.
Furthermore, he (or she) must be familiar with many of the matters

1Tt is elear that here “minimum” (or “maximum ") refera to relglive minimum (or
relative maximum}).

* For example, ace Bliss (1,2), Bolza, and Courant (1) listed in the Bibliography.



INTRODUCTION 3

encountered in a short course in advanced calculus. Practically all the
required results from this latter category are collected in Chap. 2; the
corresponding proofs may be found in texts listed in the Bibliography .1
With one brief exception (11-2), no use is made of the methods of vector
analysis. The same statement holds for the use of complex numbers ;
in the absence of a statement to the contrary, all quantities that appear
are to be assumed real,

The wider the reader’s knowledge of physics, quite naturally, the fuller
will be his (or her) appreciation of several of the results achieved in later
chapters. Only the barest acquaintance with the concepts of elemengary
physies is presupposed, however; the reader to whom the study of physics
is completely foreign will experience difficulty in following the.develop-
ment at only a very few points. ' )

With respect to purpose the exercises at the end of each cHapter may
be divided, roughly, into three categories: (i) filling in{of/details in the
development of the text, (i1} illustration of methodswand results treated
in the text, and (ifi) extension of the results achiéyed in the text. In
nearly all cases adequate hints are given; oftel{these hints appear only
as final answers. O

Study should begin with Chap. 3. The fagterial of Chap. 2 should be
referred to only ag it is required in the ,}fbi‘k following.

N

! Goursat, Franklin, and Kellogg. R



CHAPTER 2
BACKGROUND PRELIMINARIES

2-1. Piecewise Continuity, Piecewise Differentiability

{a) Let & — z; denote “‘z approaches xo from the left” and@n- x|
denote “x approaches x, from the right.” In this volume \\y faOnsider
only those functions f(x) for which lim f(z} and lim f(x) ho\th exist for

ey r—xo"

all z, inferior to the interval (x; £ z £ ;) in which f(:':) is defined. At

the respective end points we require the existence of llm f(x) arul I;m fir

If, for x; < @ < 25, Im flz) = lim f{z) = f(gok thenf('z:) is umh:mum

T z—rant

at = = xo; otherwise f(z) exhibits a jump discontinudly at x = o H
lBm f(z) = f(z,}, then f(z) is confinnous aL’{h"e left-hand end point + =

othcr\\lse f(z} exhibits a jump dlSCODt]Il’lllt} at x = x;.  An equivalen
statement holds for the right-hand.&nd point = = ..
A function is said to be piecewisgeontinuons in an interval i it possesses
at most a finite number of jumpdiscontinuities in the interval.
() A function is said #0“\be differentiable at T = . if the limit s
r— x; of the ratio {(“&\f/A:c) tf(x) — flaal/(x — zo}t exists, U
lim (Af/Ax) exists, ﬁl\éfunotlon is said to have a left-hand derivative at

Eoed {1

x = xg; if lim {&fﬂ}x) exisis, the function is said to have a right-hand

r—rrh

derivative atjas\"; Tp.

A funetfonis said to be piecewise differentiable in z; £ # < x, if il
possesses s rlghf and left-hand derivative at every interior point of the
mtervaP and if the two are cqual at all but a finite number of points of
t'he interval. Further, the function must possess a right-hand derivative

T = 2;and a left-hcmd derivative at * = x». Any point at which the

1trht— and left-hand derivatives are unequal we label “a point of dis
eontinuity of the derivative.”

We eliminate consideration of any function whose derivative undergoes
mfinitely many changes of sign in a finite interval. This elimination
precludes, incidentally, the appearance of any function of which the

derivative is dl.scontmuous at a point although the right- and left-hand
derivatives are equal at the point.

4
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§2-4] BACKGROUND PEELIMINARIES

9-2, Partial and Total Differentiation

(@fu=7Ffzy .. .2,c=c(s ... 0y=9yrs ... 0...,
2z = z(r,8, . . . 1), then
du _ df oz | of oy _ of oz
ar azar | aydr T T 8z ar (1)
where » may successively be replaced by s, , L
MY Hu=flzy ....z0z=uxy= y(i), ..., 2 = z(1), then
du _of L ofdz | o dy o, fdz &
ETRT e dx di dy 4t - T 3 oz dt \ 2

"\..

(c) The quantity p(z,y) + g(z,y)y'— where the prime mdlcat(\s ordmar;
differentintion with respect to z—is the derivative (dg/dz)X of«bome fune-
tion g(z,y) if and only if (4p/dy) = (8g/dx). In this e\eut p = (8y/8x},

= (dg/3y).
2-3. Differentiation of an Integral ‘\\“
(@) Tf O
PRGN
=19 = [ ez,
then “.',‘
al » =9 g
=T =fmofl ~ o Tt | la @
G €

provided (8f/3¢) 1s a conﬁm\mus funection of ¢ and of x in z, = ¢ £ x4
In ease 23 and 2, are si;-i'ir}tly constant (independent of ¢), the right-hand
member of (3) redueesto its final term.

(B) If the integr’anﬁ f of a multiple integral I is a funection of a parame-
ter ¢, as well wd of the variables of integration, the derivative (df/de) is
computed b-y }eplacmgfby (af/d¢) as integrand funetion. Tt is assumed
that the r@gfon of integration is fixed (independent of €) and that (8f/d¢)
s a 0n§1~riuou:s function of ¢ and the variables of integration.

2-4, Integration by Parts
We repeatedly emplay the rule for integration by parts

f fdxmgf]’—[ffggdx, @)

in which it is required that f and g be everywhere continuous but merely
piecewise differentiable m 1 = 2 = @,



6 CALCULUS OF VARIATIONS [§2-5

2-6. Euler's Theorem on Homogeneous Functions

A function Flzy, . . . ,z,uy, . . . ,w) is said to be homogeneous, of
degree n, in the variables w, v, . . . , wif, for arbitrary &,
Flay, . .. zhwke, .. hw) = BF(ay, . . . Y, . w). (5)
Any function for which (5) holds satisfies Euler’s therorem :
F oF .
u%+v%+ roe- +wau- =nFf{zy, . .. zup, ... ,w)‘.\ {(6)
2-6. Method of Undetermined Lagrange Multipliers O\
A necessary condition for a minimum {or maximum) of f‘(;ﬁ‘r, .2
with respect to variables z, y, . . . , 2 that satisfy N
Gilwy, ... 2 =C (=12 . LW, (7)
where the C; are given constants, is O
OF*  gF* FH .
o e = s = AV s
ax ay N\ ?Z_ 0’ ( J
N . \.
where F* = F + Z A\Gi. The consvta,n];”s AL Ay, Lo L, Av—introduced as
im] ‘
undetermined Lagrange multipligrs—are evaluated, together with the
minimizing (or maximizing) xalues of Z, Y, . . .,z by means of the set

of equations consisting of {7rand (8).
. &
2-T. The Line Integra

{a) The Lne c'?z:t,eg;?:al of the funetion J(z,y,2) from P, to P, along the
finite curve ¢ (agsumed to consist of a finite number of smooth Arcs) is
defined ag t;%lldox.\is:

We subdivide C into & ares of lengths As,, As,, . | . ; Agy.  The fune-
tion f (x,gté,) is evaluated at an arbitrary point (Tr,¥1,2x) of the kth subdivi-
sion.aqd the product Fleeyn,z)Ass is formed, for each & = L2 ..., N

\ ¥

We form the sum Sy = 2 J@uin2)As, and proceed to refine the sub-
£

division in such fashion that N increases without limit and the largest
Asi approaches zero. If the limit of Sy with respect to thig unlimited

refinement exists {independently of the specific modes of subdivision},
it is by definition

lim 8y = [ fey,5)ds ©)
—the line integral of f from P, to P, along .
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Other {orms of the line integral are

o iwyads, [ feuad, [, iy (10)

In terms of the definition of {9) these are respectively equal to

[c[f(x’y*”‘) %]d& ];[f(x,y,zJ %%’] ds, fc |72 gg] ds

Since, however, the derivatives (dx/ds), {dy/ds), (dz/ds)—computed with
trespect to the curve C-—have algebraic signs that depend upon the direcs
tion (along () assigned to the increase of s, the complete spec;ﬁcatn{n of
each of (10) requires a statement as to the direction (from Pyfo'P: or
from Py to 1) in which the integration is carried out, Z.e., the assignment
of the direction in which s is assumed to increase. (Thus any’ one of the
integrals (10} carried out slong € from P, to P, is th(\negatwe of the
same integral carried out aslong C from P to Py.)

(5) To evaluate (9} we introduce the parameh\cequatmns xr = x(f),
y =y, 2 = z() of the arc ¢ (where ¢ mch\as}s in the direetion of
inereasing 8) to form the definite integral '

[ s a000 (%) + ( a3 +(d§’) & w<w, 4y

where #; and #; are the values of Mvhlch denote the respeetive end points
of €. (The parameter ¢ is 1nsmne cases conveniently chosen to be one
of the variables z, y, 2, o L\\en &.) 'The definite integral (11) provides
the evaluation of the ling\ \egra.l {9); for the evaluation of the integrals
(10}, the radical of Ql) is replaced respectively by (dz/dt), {(dy/df),
(dz/dt. e

(¢) An 1mp0rtanf> example of a line integral is

\ M o _1fef dy dx
_gfﬁﬁ(mdy ydx)—ﬁf( E ydt)dt, (12)

taken betnterclockwise about a simple closed curve € in the xy plane.
Here the parameter ¢ is chosen so that the point [x(f),y(¢)] traverses ¢
once in the counterclockwise sense as ¢ inereases from £, to &, The
integral (12) is equa!l 1o the aree enclosed by C.

(d) Quite often involved in the integrand of a line integral taken about
a stmple closed curve C in the xy plane is the normal derivetive of a func-
tion w(z,y). The (outward} normal derivative is defined as

— £t
lim W) ~ w(z'y) _ dw
an—r0 An an
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where (x,y) lies on €, {x',3") lies interior to € on the normal drawn to €
at {z,y), and An is the distance from (#',") to {y) measured along the
normal.
A useful relation is
an  dx ds dy ds

where (dy/ds) and (dx/ds) are computed with respect to €.

2-8. Determinants Q
{¢) The general nth-order determinant O\
: N
| [ S R S TR / P J A N/
oy Q2w . . . Qoy ( ",:'? } {-14)
............ | C
[@n1 Gaz 0 0 Guad NV

is by definition a linear homogeneous function of the elements

Qks, - - ., Gxa of tho kth row, for each k&1, 2, . ., n, such that it
is identically zera if two rows are idehiical and has the value ! when
ap =0 (k7 and ane = 1 (A =3,2 . . . ;n). In the special case

n = 2, the definition provides \™
!5 au _ay
" = dnlzs — dnie;

. | tfg}&’ f2as |
for n = 3, \\

P

lﬁu GF ala’i':“"

¢ @2z {Igg Gra O | ! ey g
[ @21 e G-zs\rx‘—-' a1y + Cp + ai; :
N 32 {33 &3z Ay Ty g2

g1 Gy 0% | '

O

(B A‘&ﬁém of » simultaneous linear homogeneous equations

:"\‘: \ . o )
& 4 E apxy = 0 (G=12 ...,n
\ 4 k=1
in the » unknowns z1, @2, . . . , 2, has a nontrivial solution ~whereby
not all the x; are equal to zero-—if and only if the determinant (141 of
the coefficients vanishes.

(c) The product of two nth-order determinants whose elements are
denoted respectively by a; and by (b = 1,2, . . . ., independently)
is the nth-order determinant whose elements are

G = b+ tebie + ¢ - - Linbin
7.k = 1,2, . . . n, independently).
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(d) Tf the elements of (14} are differentiable functions of a variable z,
the derivative of {14) with respect to = is the sum of » determinants,
the kth of which is formed by replacing each element of the kih row of

{14} by its derivative with respeet toz, fork =1, 2, . . . , n
() A set of functions ¢u(z,y, . . . 2), bz, . . . j2), - . ., duly,
. ,&) 18 sald to be linearly independent if no relation of the form
4 1¢1 "';_ —41‘452 + T + An‘i’ﬁ = 0,
where A4, A, . . ., A, are constants, holds identically in x, 9, . . . , 2
unless 4y = A, = - - - = 4, = (. Otherwise—if such a relation holds

in which one or more of the 4, differ from zero—the functions are said“o
. K®
be linearly dependent. N\

If the funetions ¢1(x), $ola}, . . ., ¢a{x) all satisfy the samewth-order
linear homogeneous differential cquation, a necessary and dufficient con-
dition that they be linearly dependent is the identical vashm;:, of their
wronskian >

E ‘ibl(x) ¢f(x) . ¢ﬂ 9{)
7
o = ‘ ‘ﬁl(x) ¢'2($) L . “Qn 4 ) (15)

...................

{n) (.’L‘) {n)(x) e $ ; (m(,n)

where ¢ (x) is the kth derivative Qﬁ‘jti':’;‘v‘ith respect to ®, for k =

2, ... ,n (The prime replaces phé:s’uperscript lin case & = 1.)
(f) The functional determinant, or jacobian, of wuy, #s, . . . , uy with
respect to Ty, @9, . . ., a8 id.(z{jned as
N w s
- i 63:1 Bml 6‘x1 i
/ N\% | Ous a?.t.g GuN
Uy Ugp - - UN) | m— w5
Tad e T
O ow du | duy|
:.\‘: 3 63:\ a.fv“‘\' a.fu":\. |!
If uﬁt}g, . . ., uy are differentiable functions of 1, ¥2, . . . , ¥x, and
Y1, Yo, . - . » #n are differentiable functions of , @, . . . , xy, then
Sluayte, . . . guy) _ O(untds . . . U} Oy, o . . YN}
a(xlrx% B Jx"\') a(yl;yﬂr - ,?}A‘) 6(3,'1,:62, e )xﬁf}

The echange of coordinate wvariables = = x(u,p,w), y = y(uv,w),
z = z{u,p,w) is a one-to-one correspondence in any region of space in
which the jacobian {d(x,y,2)/d(u,v,w)] does not vanish. In two dimen-
sicns a ehange of plane coordinate variables z = z{up), ¥y = y(u,») is a
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one-to-one correspondence in any region of the ry plane in which the
jacobian [8(z,5)/9(uv)] does not vanish.

A change of varisbles © = x(u,p,w), ¥y = y(u,n,w), 2 = z(u,v,w) for the
evaluation of a triple integral is carried out according to the rule

ij [ Fiayz)dz dy do = fR f f Ju,v,w)

where f is the function F expressed in terms of w, v, w, and R’ is the
region R, but described by the variables %, », w. A formula completely
analogous to (16) holds for the transformation of double ini,cgr:}l@_ \

3(%,y,2)
alu,p,w)

du dv dw, (16)

2-9. Formula for Surface Area O

If z = z(x,y) is a single-valued continuously differentia,f;i;é}'f unction of
£ and ¥, the area of a portion of the surface represented by this function

is given by
az\' . o\ o
!r = —_— _ § 4
ﬂ [1 * (ar) * (ay)&.@x .

NN

where t}‘le integration is carried out oven the domain D of the cy plane
onto which the given portion of the surface projects.
2-10. Taylor’s Theorem for Functions of Several Variables

If, in some neighborhood of\xo,y0, . . . ,20), F(z,y, . . . ,2) possesses
partial derivatives of order N with respect to all combinations of the vari-
ables =, g, . . . , 2 T‘fﬁ‘have the expansion, valid in that neighborhood,

ANY¥
Flay, . . .2 pFlooye, . . . 2) -f-( I 4,24 -f-s"-a—)F
\\ oz dy dz
S AY
P\ ,
o~ 1 (. 2 3 Y
\ 9 +m(f§i+ﬂa—y+ '+§'5;) Fs

where E=2 0 =

]

+|v

o

Y=Y, ..., {=z—z Each “power” of
[£(3/a2) + a(8/0y) - - - . £+ {(8/0z)] is formed aeccording to the
13‘_’15‘{ O_f algeb?a, but with the coefficient of Fy' . .. I* interpreted as
(g /0By .. . 324y multiplied by the proper numerical factor;
the subseript “0” implies the evaluation of the derivatives at ¢ = %o,
Y=Y ..., 2=2z; and the subscript “4” implies the evaluation

of the Nth-order derivatives at z
= 8 = N
z=zn+9§’(0<9<1). T St ’
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2-11. The Surface Integral

(a) The surface integral of the function f(z,y,2) over the given finite
surface B (assumed to consist of o finite number of smooth portions
bounded by curves composed of a finife number of smooth ares) is
defined as follows:

We subdivide B into N portions of area A8, AS;, . . ., ASy. The
funetion f(z,y,2) is evaluated at an arbitrary point (21, ys,7x) of the kth
subdivision, and we form the produ;:t f(@e,y2,2:)A8; for each k = 1, 2,

, N. We form the sum Zy = Z f(@r,ye2:)AS, and proceed to refine
£=1
the subdivision in such fashion that N increases without lmit and ¢he
greatest distance between pairs of points of any subdivision apprciaches
zero. If the limit of Zx with respect to this unlimited reﬁnement exists
(independently of the specific modes of subdivision), 1t is by rfeﬁmtmn

~\
lim Zy = ff Fg,2)dS QO amn
B A

-the surface integral of f over B. \ &

(b) For the evaluation of (17) one introduegs e’ set of surface coordi-
nates (v,w) such that one and only one pait wf*values of these variables
defines a single point on B through relahons of the form x = z(r,w),
y = ylow), 2 = z(r,w). With the mtroductlon of these parametric
equations, the surface integral (17) is @valuated as the double integral

fff(x(v,w), y(v@,g%u,w)) EF — G dv dw

carried out over the values(of v and w that completely describe B, where
N4
ax\’ oy ERAY . ax\’ ay\* 82\’
E-(a) +(&. +(a“) F—(?a?o) *(5@ )
g mow ey e
N T wew ' dvow ' ovow
: t\: $
(In case(the turves v = constant meet the curves w = constant at right
angles, thé quantity @ vanishes identically.)
{c) Quite often involved in the integrand of a surface integral carried
out over a closed surface B is the normal derivative of a function U(z,y,2).
The (outward) normal derivative is defined as

- F ooy ot
pm JEwe) - Ueye) 3y
An—rQ An an

where (2,y,2) lies on B, (¢,y',¢') lies interior to B on the normal drawn
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to B at {z,y,2), and An is the distance from (z',%",2") to (z,y,2) measured
along the normal.
A useful relation is
ol al 1 U
an = oz O (n,2) + Ty cos (n,y) + 3, 08 (n,z}, (18)
where cos (n,z) is the cosine of the angle between the positive x direction
and the normal drawn outward from B at the point at which (84 /dn) is
computed. Cos (n,y) and cos (r,z} have corresponding meanings.
A second useful expression for the {outward} normal derivative'ig

all du a_U du 8_{}?1{ \' \\
el _ + Biax _ﬂﬁy— 6{__ dz 0z A (19)

" \/ 6;“2“4_ oy’ 4 (2 N0
3z ady dz '\'\
where u(z,9,2) = constant is the equation of thenrface 5. I'he plus

sign is chosen if (du/dn) > O—i.e., if -u{:u,y}.z)’im}éuses along the normal
drawn outward from B; the minus sign is plﬁer}én if (au/dn) <0,

2-12. Gradient, Laplacian o\

{a) The gradient of the funct-ion,jé&(:é,y,z), denoted by v¢. is detined
as the veetor whose cartesian @dmponents are respectively (2¢/d2),
(3¢/0y), (0¢/82). The magnitude |V¢| of T¢---the square root of the
gum of the squares of I;heit‘l)‘ree components-—is the normal derivative
(0¢/dn), where the posifitie iormal direction is perpendicular (o the sur-
face ¢(z,5,2) = constaht, in the direction of increasing ¢.

() The scalar grothict of two vectors, defined as the product of the
respective magﬁa@udes of the vectors multiplied by the cosine of the
angle betweentheir directions, is equal to the sum of the procluets of
their respgetive cartesian components. In particular, if two veetors
have thewame direction, the sealar product of the two is the product of
theiz agnitudes.

fe) The laplacian of a function #(x,u,2) is delined ax

4 ¢ | % | I
2 = .
Vig 72t a? + a7

i20)

e depepds .only on x and y, the final term of (20) drops out. [n this
case V¢ 1s said to denote the fwo-dimensional laplaeian.

2-13. Green's Theorem (Two ‘Dimensions)

We consider a domain I of the zy plane bounded by

. a simple closed
eurve ' that consists of a finite numher of smooth ares,

The line nte-
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grals which appear are carried out along C in the sensc that an observer
walking forward along C in the direction of integration constantly has
D on his (or her) left.

() If P(z,y) and Q(z,y) are everywhere continuous in D and piecewise
continuous along €, and if D may be subdivided into a finite number of
subdomains in each of which the first partial derivatives of and € are
continuous, then

U(g_f: + gg) de dy = ﬁ (P dy — @ dx). (21
b2} .

(6) By writing P = 7@, @ = oF in (21}, we obtain the two-dimgz;\m'{onal
analogue of integration by parts K

7'\

o pon _ [ (% oF Ko Wl
ff(G%-FF@)dxdy-— ffn(ax+ay)dxdy+£{?(edy Fdz).
D i O\

! (22)

A\
(©) By writing 7 = ¢, G = (3¢/02), F = (3¢/y) in (22), we obtain,
with the aid of (13) of 2-7(d), X0

_ _ [[(2e s , aBoy 24
f YWip dr dy = ff(a/s 6$~:’}?f6y &y) de dy + fcwands, (23)

F2 b

with the definition (20) of the {two-dimensional} laplacian.

An important special ¢ .sé\iof (23) is achicved by sctting ¢ = ¢.

(d) By interchangingng and ¢ in (23) and by subtracting the result
from (23), we obtaig .1\:1ie Green’s formula

O
[ @V — o)z dy = fc (¢ % - ¢%) ds. (24)
8

(o) B Sekting @ = 0, P = [6(6n/02) — n(0G/a)] in (21), we obtain

N\
a2y B 2% oy 4@\
[fgwdxdy_ffn@dmwfc(a% 1o )dy.  (25)
D

5

Further, theuse of P = 0, @ = [G(an/3y) — n(8G/dy)] in (21) provides

3% B %3 _ A
[f@wdxdy-[fqa—yz-dxdy L(G% ﬁ”a_y”)dx- (26)
D

I
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By setting P = 3[G(94/3y) — n(8G/oy)}, @ = 3G (31/92) — n(8G/3x)]in.
(21), we obtain, finally,

ﬂG dxdy [[ oz 6y f( "ay 4
B
—%L(G%wng)dx. @7

2-14. Green’s Theorem (Three Dimensions)

We consider a region R bounded by the surface B which (‘Onsh\ts of a
finite number of smooth sections. (It may happen that B Pousists of
two or more unconnected portions, as in the case of a “'hql‘lou region.)

(o) We let Ulz,y,2), Viz,y,2), Wiz,y,2) be continuoug i’k and suppose
that B may be subdivided into a finite number of/portions on cach of
which U, V, W are continuous. Further, we as\tnme thai /! may be
subdivided into a finite number of subreglons in each of which the first
partial derivatives of U, V, W are contmuolm Then

fff T asay s - ff w ;s (m2) + V cos (n.y)

+ W cos (n,2)[dS, (28)

where cos (n,z), cos (n,y), cos tﬁ z) have the meanings assigned in 2-11(c).
(b) By writing U = qf‘;}V 97, W = nH in (28), we obtain the three-
dimensional analogue\of htegration by paris

(et [ (2 2+ )0

§ + f f olF cos (nx) + G cos (n,y) + H cos (n,z)}dS. (20)
ey By writing ¢ =y, F = (0/02), G = (94/0y), H = (36/02) in
(29), and with the aid of (18) of 2-11(¢), we obtain

O3y |, 0y | A Y
Vig dzx -
[fp b dody de jf[(axax +2E L B W)y,

+f[¢g—:d8, (30)
B

with the definition (20) of the laplacian.
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An important special case of (30) is obtained by writing ¢ = ¢.

(d) By setting ¢ = 1 in (30), we obtain

_ {foe
‘Q‘[V“qbdxdydz—-[f-aa ds. (31)

() In case B includes all of space, and if ¢ approaches zero with suf-
ficient rapidity at distances far from the origin of coordinates, (30)

becomes, if ¢ = ¥,
2 1 2 &N\
[f Wit dedydz = ~ f[[[(g—i) + (g—;&) + (%) ]d:c dy dz;’\§32)

where the integrals are carried out over all of space.

&
&
g\&\‘ /
A\
O
AN
o0
Qv
’\‘./
O
A\



CHAPTER 3
INTRODUCTORY PROBLEMS

3-1. A Basic Lemma

(@) In the work of this and succecding chapters we employ repeaiedly
ane or another form of the following basic lemma.: QO
If @1 and 2:{> 1) are fixed constanis and G(z) is a parlzcuiar‘a\m{mmms

function for 21 £ = £ o, and &f O
[Pawe@e =0 Y (1)
for every choice of the continuously dz’ﬁerenm'a.h!e":i.h;.ction nlx) for which
n(@y) = n(z2) = OND 2)
we conclude that \ &
Glz) =0 1dentlcally Mz €z £ 2o (3

Proof of the foregoing lemma Iestb upon demonstration of the existence
of ai least one suitable functwn ‘q’(.f) for which (1) is violated when (/(x) 18
such that (3} does not hold;

We therefore suppose that (3) does not hold-—that, namely, there is a
particular value &' o&r;(a?l < &' < 24) for whieh G2} = 0; for the sake
of definiteness, weysuppose G(z') > 0. Sinco (x) 18 continuous, there
must he an mterwl surrounding " —say r; £ 2 £ a,-—in whichG(z) > 0
everywhere, ®wul (1) cannot then hold for every permissible choice of
n{x). T‘or Qx}mple, we consider the function defined by

N\ " 0 for x,

’ £z £ .
oY ) = )Mo -2 foral 2224, (4)
~\ 0 forzi < x £ ay;

) 2

for this particular 5 {(which satisfies (2) and is continuousiy differentinble,
clearly) the integral of {1) becomes

[ a6 @ - fx (& ~ a})z — =G (z)da. )

Sim'ag G{z) > F]in 71 £ ¢ £ ), the right-hand member of (5) is definitely
positive—a violation of the hypothesis (1). A similar contradiction is
reached if we assume G(z') < 0. The lemms is hereby proved.

16
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(1) In some applications the basic lemma of {a) is required in & more
restrietive form. It is required, for example, that an integral of the form
(1) vanish for every continuously twice-differentiable 4(z) for which (2)
holds. To prove the necessity of (3) we again suppose G(z) > 0 in
xS a £ 4}, but we choose for 9{z) the function equal to (x — z})*-
(#h — )% in oy £ 2 £ «} and zero in the rcmainder of x; £ ¢ £ 2.
The details are left for exercise 1(a} at the end of this chapter.

Similarly, the basic lemma of (a) holds if we require that () possess
continuous derivatives up to and including any given order [see exercise
1{b)]. Q

(¢) If D is a domain of the zy plane, the vanishing of the double i']il\tle\gl‘al

7'\

J[1tey)6 s dy O e
D

N,
27
| %

for every continuously differentiable » that vanishes op.j%lfe boundary €
of D necessitates the identical vanishing of G(z,y), adsiimed continuous,
in D. The proof of this extension of the basicJepima, in essence the
same as the proof given in (a} above, is left for &gd—chapter exercise 1{c).
Further, this two-dimensional form of the lemma still holds if we require
that n(x,y) possess continuous partial denvatwes up to and including any
given order [see exercise 1(d)]. N

The extension of the basic lemma 8 tntegrals of any given multiplicity
is obvious {see exercise 1{e)]. N

4

3-2. Statement and Formulation of Several Problems

The problems handled, é‘}t in this chapter possess an intimate con-
uection which enables ug\to treat them all as special cases of one general
problem whose solutidiiZollows in 3-3. Tor this reason we state briefly
and formulate fg]{r“\ploblema in this section, with the aim of making
evident. Ltheir ¢gmmon character.

(a} We ﬁrsﬁ concern ocurselves with the question: What plane curve
counectm:gxmo given points has the smallest are length? As a first
approfchyto an answer we fix our attention upon two points (21,4,) and
(z2,y2) i1 the zy plane, with ©1 < %4, and a smooth curve of the form

v =yim)  ly(ed =y y(m) = gl (7)
connecting them, The lengih of the are (7) is given by
- [ VT s, (8)

where ' = y'(z) denotes the derivative (dy/dz). The problem thus
becomes ene of choosing the function ¥(z) in such fashion that the inte-
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gral (8) has the smallest possible value. In 3-9 below, the restriction (7)
that y be a single-valued function of z is removed. This is done by con--
sidering arcs in the parametrie form z = z(f), ¥ = y(%), where { is the
parameter of the curve.

(b) A less frivial problem than the one posed in (a) resides in the
question: Given $wo points on the surface of a sphere, what is the are,
lying on the surface and connecting the two points, which has the shortest
possible length? We immediately generalize the problem ae follows:
Given two points on the surface -

glxy,z) =0, (9)

what is the equation of the arc lying on {9) and connecting\'t.?fb?sn points,
which, of all such connecting arcs, has the shortest length?

To formulate the more general problem, we exprefs the equation of
the given surface (9) in parametric form, with paratdeters u and v:

T = x(u}v)! = y(u]v)) \z,': ;(u)v)‘ (10)

In terms of the differentials of « and v, ;}'\éls\qt’lare of the differential of
are length may be written PN,

d9)? = (@2)* + (@y)? + (@22 N
= P(u,u)@:{u’)f2 + 2Q(up)du dv + R{w,m{de)?,  (11)

where, by direct computatjgn‘ffc;m (10}, we have
az\’
+ (51-:) v (12)

ar\? ay ] 'i““%z 2 ar\? 3y 2
“(a"a)*‘(@).“‘ Eﬁ)’ R=(%)+(5)
(13)

™ dx dx  dydy , dz 9z
O~ Gudw Toud Toud

&

N

(In case the)eurves ¥ = constant are orthogonal to the curves » = con-
stant p;fﬁ*he surface (9), the quantity @ is identically zero.)

If:the given fixed points on the surface are (w1,v1) and (usrs), with

@p>»'u, and we limit our consideration $o ares whose equations atre
expressible in the form

p=o(w)  fo(u) = vy, 2(us) = 4, (14)
the length of the arc is given, according to (11), by

I'= j:s VP(up) + 20y + R{u,v)v'? du, (15)

}vhere v = v'(u} designates the derivative (dv/du). Our problem, then,
8 to find the function v(w) that renders the Integral (15) a minimum.
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Removal of the restriction (14)—namely, that » be s single~-valued func-
tion of u—is effected in 3-9 by replacing (14) by a parametric repre-
sentation u = wu(t}, v = »(f) of the connecting arc on the surface.

{¢) In June, 1696, Johann Bernoulli set the following problem before
the scholars of his time: ““Given two points A and B in a vertical plane,
to find for the movable particle M, the path AMB, descending along
which by its own gravity, and beginning to be urged from the point 4,
it may in the shortest time reach the point B, It is tacit in this state-
ment that the particle descends without friction. )

Although Newton had earlier considered at least one problem £All:
ing within the province of the ealculus of variations, the proposal of
Bernoulli’s brachistochrone problem marked the real begmmng\ of “gen-
eral interest in this subject. (The term “brachlstochrone” denves from
the Greek brachisios, shortest, and chronos, time.) "

We suppose the points A4 and B in the xy plane, the y axis directed
vertically downward, and the z axis horizontal, witl\passage from 4 to
B marked by an increase in 2. Let the extremizing path have the equa-
tion y = y(xr). We assume the initial speed 7y f e particle to be given
in the statement of the problem. Let tha. ‘polnts A and B have the
coordma,tes (z1,21) and (xa,u2), respectwely, so that y(z,) = 4 and
y(xa) =

Since the speed along the curve SN gwen by v = (ds/dt), we have for
the total time of descent N

7= [,@ - [Vt
z’%\ "y v

To compute » as a funétion of the coordinates we use the fact that a

decrease of potentialehérgy is accompanied, in the assumed absence of

friction, by an equéﬂ inercase of kinetic energy; namely, if the particle
mass is m and y\13 Jthe constant acceleration due to gravity, we have

gmy? — "B'mvl mgly — ),

when{,e'?)s \/—" it — Yo, where 4y = ¥y, — (¥1/29). (Clearly, y; — Yo
is the vértical distance through whieh the particle must descend from
rest to achieve the speed »,.) Thus the time of descent is

I ’
I= Lf vity®, (16)
\/29’ \/y — Yo
Our problem is that of choosing the function y(z) which renders (16) a

minimum,
(d) Given two fixed points (z1,%;) and (zs,32), e seek to pass through
them the arc y = y(z) whose rotation about the x axis generates a sur-
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face of revolution whose area included in , £ & = a2 Is 1 minimuom,
We assume that y > 0, ¥ > 0 and that y(x) 2 0 for vy =0 L gy

That is, we seek to minimize the integral

I =27 [my\/I + ¥t dx,
¥

which is the area of the surface of revolution, by proper choive of y = y(z)

for which ¥, = ¢{z:) and y: = y(z2).

3-3. The Euler-Lagrange Equation

{a) A complete solution to cach of the problems of the pru;mlin\g see-
tion would carry us beyond the scope of our study.  We gident our-
selves, instead, with deriving the answer to a limited questioh which runs
as follows: Given that there exists o continuous, twi(:t.-—a.{,i{f:gn-nl nible fune-
tion which minimizes the integral connected with any gt Of the problems
of 3-2, what is the differential cquation which this.f‘l}t\m‘tinu st sutisfy?
We do not, in the first place, inquire into the exigtence of the minimum;
nor do we take into account the possibility ()fil\ﬁiuiruizing functions which
do not possess the conditions of smoothuessv(Twice differcutinbility) that
we require. It can be shown,! in soveéryl cases, that the conditions we
impose are not too restrictive; i.e."th(:“:ms\\‘er to our medn question 1s
very often the correct one for théz:@hme question when the minimizing
function is required merely to htseontinuous and differentiable in sections.

In analytical terms our 'ques{;ion is: Given that there exisls u twice-
differentiable functionogr% y(x) satisfying the conditions yird =y
yl{zs) = y, which rendﬁl\:‘.'the integral

27 1= [Ty ()

8 minimum,\";\}ﬁat is the differential equation satistied by yir)? The

constants @y’ 41, s, y» are supposed given, and f is a given Nunetion of

the a,rg},?ments %, %, y' which is twice differentiable with respeet to any,

or anyicombination, of them. Examination shows that each integral of
S{%a“bove is & special case of (17).

{b) We denote the function that minimizes (17) by y(z) and proceed

to form the one-parameter family of “eomparison” funetions V()
defined by

Y(z) = y(z) + enfa), (18)
where #(z) is an arbitrary differentiable function for which

nle1) = plxs) = 0 (19)
1 Bec Bliss (1,2).
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and ¢ is the parameter of the family. Thus, for each function 5(2), we
have a single onc-parameter family of the form (18); with. 1}(1‘:) given,
each value of ¢ designates a -single member of fhat one-parameter
family. The condition (19) ensures that ¥(z)) = y(z1) =y and
Yiz:) = ylxs) = y2; that is, all the comparison functions possess the
required end-point values of the functions with respect to which the
minimization is carried out. By suitable choice of 4(z) and e it is possi-
ble to represent any differentiable function having the required end-point
values by an cxpression of the form (18). The essential importance of
the form (18} lies in the fact that no matter which family Y'(x} we hap-
pen to deal with—no matter, that is, which function 5(z) is chGseh—
the minimizing {function %{(z} is & member of thai family for the choice
of parameter value e = 0. \
Geomgotrieally, the diseussion of the preceding paramaﬁh deals with
onc-parameter families of curves ¥ = ¥ (¢) conncetingthe points (1,9)
and (xa,%:). The minimizing arc py ’
y = y(z) is a metaber of each family AN
fore = 0. The vertical deviation of S
any curve ¥ = ¥ (x) from the actual ¢
minimizing arc is given by ep(z). [\
(Sce Fig. 3-1.) For any permissi- O
ble choice of p(z} it is possible ta ™
choose a range of valucs of e—gay™

y&}yféJ + £7{x} {y,)

—eg < € < e—which renderg{ the 1,9,)
product |en(z}| arbitrarily s@aﬂ for
all = between x; and zs. S The region z

of the plane covered bysthe curves
y = V(z) for which {J{&) — ¥Y(2)| is
below any asmgncn{p sitive number is said to constitute a “neighborhood”
of the minimiging arc y = y{z).

Replacing ;j and ¢’ in (17) respectively by V{x) and ¥Y'{x}), we form
the intggz;aal" '

V I = [ f,Y, Ve, (209

¥z, 3-1.

where, for a given funection »(z), this integral is elearly a function of the
parameter . The argument ¥’ is given, through (18), by

V=Y = y@ + e'(2). (21)

We thus gee, with the aid of (18), thai the seiting of ¢ equal to zero iz
equivalent to replacing ¥ and ¥’ respectively by v and 3. Thus the
integral (20) is a minimum with respect to e for the value ¢ = 0, aceord-
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ing to our designation that y{z) is the actual minimizing function. This
fact holds no matter what is the choice of #(z).

The problem at hand is reduced in this way to an ordinary minimum
problem of the differential calculus with respect to the single variable e.
But, unlike most ordinary minimum problems, we know in advance the
value of the variable for which the minimum is achieved—namely, ¢ = 0.
Thus we know that the necessary condition for a minimum, the vanish-
ing of the first derivative of I with respect to ¢ must hold for « = 0,

that is, N\
I'oy =0. O\ (22)
Using the rule given in 2-3(a) for the derivative of ary mtegral with
respect $o a parameter, we obtain N

dl oy [T(9f8Y | o 8y o,

from (20), with the aid of (18) and (21). Smée:set.ting ¢ equal to zero is
equivalent to replacing (¥,¥’) by (y, ’),\We have, according to (22}

and (23},
oo [T N o
1(0)—L(yw+a,n)dx-0.

Integratmg by parts the second term of this integral, we obtain'

v0 - ZO1 + "% - ()]
?[By dx( )]”d“"* @)

because of fu](é.\'éstrictlon (19). SBince (24) must hold for all #, we may
use the tfséic lemma, of 3-1(a) to conclude that

N\ of _ d [ .
.»\; D dy  dz (By ) 0. (25)

This equation—the so-called Buler-Lagrange differential equation—is in
general of second order. Its solution for any given problem of the type

,.\’

1 We use the designation ]:1 throughout this work as follows:
31

4@ |7 = G — GG,

This must be distinguished from the notation

G(x)[ﬂ = G(zy).
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enuneiated in 3-2 supplies the twice-differentiable minimizing function of
the integral of the problem, provided the minimum exists.

{¢) It is to be noted in the proeedure of (b) above that the condition
I'(0) = 0 is not a sufficient condition for a minimum of I(e) for ¢ = 0.
In fact the relation 7'(0) = 0 might even indicate a maximum of I(¢) for
e = (. In all the problems considered in 3-2, however, it is simple to
convince oneself that no maximum exists for the integrals involved. The
distance along a smooth arc connecting fixed points can be made as large
as we please; such is the case also for the time of descent down a curve
and for the area of the surface of revolution generated by a smooth\drc
between fixed points. Yet the relation I’(0) = 0 may also indight® the
existence of what corresponds in the ordinary differential cal€ulus to a
horizental inflection at ¢ = 0. That is, we may have a:~éituation in
which—{or at least some choice of the function (x) intrpfiuted in (18)- -
the difference [I(e) — I(0)] may change sign as e passes through zero,
although the curve of 7{¢) plotted as a function OL e possesses a hori-
zontal tangent at ¢ = 0 for every choice of 3{x) HAS pointed out in (@)
above, detailed investigation as to which of_thie three situations—mini-
mum, maximum, or ‘‘stationary” value—prévails is in general beyond
the scope of our study. There are, howeyer, a few specific cases in which
it is demoustrable in an elementarys fa,shion that 7'(0}) = 0 definitely
implies o minimum for e = 0, and these are handled in conjunction with
specific problems or are left for t/he EXErcises.

There are many problems th‘aj: arise In our study wherein we have ho
coneern as to whether the &pdltlon {0} = 0 implies a maximum, mini-
mum, or stationary Valuem\‘ I{e) at ¢ = 0. We therefore find it useful
to apply the term egtféptum to the value I(0) for all three situations.
The function y(z) which renders the integral 7 an extremum is accord-
ingly called the gmfkemizing function. Thus a function y(x} which satis-
fies the Eulepsdlagrange equation (25) and the imposed end-point con-
ditions is b’& d{,hmtlon the extremizing function for the integral upon
whose mtegrand f the eguation (25} is generated

Evén ih those cases for which an extremum is an actual minimum, it is
not necessarily an abselute minimum. It is recalled from the ordinary
differential calculus that a minimum characterized by the vauishing of
the first derivative is merely a relative minimum with respect o values
of the independent variable in a neighborhood of the value for which the
first derivative vanishes. Thus, if (0} is a minimum achieved through
the function y(z) which renders J'(0) = 0, it must be a mirimum only
relative to values of ¢ in the neighborhood of zero. In terms of the
neighborhood of the are y = y(z) defined in (§) above, the function y(x)
minimizes the integral 7 if and only if there exists a neighborhood of
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y = y(z) such that every arc y = Y(z) # y(x) satisfying the required
end-point conditions and lying entirely within the neighborhood, renders
the value of T larger than /(0). Thus, even thongh {0} is a minimum
for which I7(0) = 0, there may be functions ¥{(z)--for which y = ¥(z)
Yies outside the neighborhood described-—which render the integral / even
smaller than 7{0). Although this fact plays no role in our study, it is
mentioned here to point out a limitation of the theory as here developed.
This limitation is of particular sighificance in the minimum-surtace-of-
revolution problem posed in 3-2(d} and considered further in 3-7(b)
helow. Q.

3-4. Tirst Integrals of the Euler-Lagrange Equation. A DegQNerate
Case O

(@) A particularly simple Euler-Lagrange equation reulift; it the inte-
grand function f is explicitly independent of the dep (\ulvm variable y.
Tor then we have that (8f/dy) vanishes identicallii hnd (231 of 3-3(h)

heeomes \
of ‘O
dx (67;) 0. ‘\
Or \
4
a—%{,— C.. (26)

an arbitrary constant. lhus ’Ehe quest for the extremizing function is
reduced to the solution of ¢ and equation invelving ¢ and v only, a first-
order differential equatloﬁ\\

If, further, f is expli¢itly independent of the independent variable , as
well as being mdependent of %, the partial derivative (af/az 15 & fun(’-
tion of %' alone,sdthat the solution of (26) is simply ¥ = ', where the
constant C,ds %"‘m’ne function of €y. Thus the extremizing functions for
cases in which the integrand f depends explicitly on ' alone are neces-
sarily hnear functions of z. This fact immediately affords the solution
of theshortest-distance-n-the- -plane problem of 3-2{a)—a straight line!

We have the readily verifiable identity

6f _ af aF  of
v - 1) -v i )—a;-aw

gt U af o
¥ [ay dx ] 3z 20

.whjch suggests an obvious first integral of the Euler-Lagrange equation
in 13he special cage that f is explicitly independent of the independent
variable 2. For since (8f/9z) = 0 in this event, we see that the Euler-
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3

Lagrange equation (25} implies the vanishing of the first member of
{27)—namely,

df , o \_

=)=

r a 13
Y 5;; —f={, (28)

or

an arbitrary constant (not necessarily the same as C; in (a) above).
Thus the cxtremizing function may be obtained as the solution’«f s

first-order differential equation involving ¥ and ¢ only. O\
{¢) If the integrand function f of N\
1= [ fayy)ds
(<

iz explicitly the total derivative with respect to bt)some funetion of
z and y, then surely the integral / is independent.ofithe particular choice
of the function ¥(z), so long as the prescribed e{l‘d\-point- values y{x1) = y:
and y(zxs) = y» are achieved. Forif f = (df/de), 1 is equal to the differ-
ence of the prescribed values of g(z,y) \at the end points—namely,
[g(za,y2) — glxpy)]. It is interestingito see what form the Euler-
Lagrange equation agsumes in this event.
We have in this case N
g™ dg , o9 ,
k™
5o that the Euler-Lagrahge equation (25) reads
(Neoy oy, d (ag) _
Dayer T T a\ay) T
But eva.luati& of the totul derivative of (dg/dy) with respect to & shows
thas this\lé,g;"t equation is tdentically satisfied since

Q" ag  dy

dydx 0z oy

This result suggests the question: What is the most general case in
which the Euler-Lagrange equation is identically satisfied? To discover
the answer we expand (25) of 3-3(b) as

af 62f 62f P 6._2)('_ o= 20)
W oy ayoy? oyt ' 29
Since the first three terms on the left contain at the highest the first
derivative of y, the identical satisfaction of (29) requires the coefficient



26 CALCULUS OF VARIATIONS 153-5

(33f/3y’®) of y” to vanish identically. But this is equivalent to stating
that f must be a linear function of y’; that is,

f=play) + a@yy" (30}
Forming the Buler-Lagrange equation' (25) for this particular f, we have

op , dq,, _dg _%p 3¢ _
@_'_a—yy dr  dy o2

for all z and . But this, according to 2-2(c), is precisely the condition
that (30) be the total derivative (dg/dx) of some funetion g(x,y).. A

Thus we have that a necessary and sufficient condition for au Yiuler-
Lagrange equation to be identically satisfied is that the integraud func-
tion be explicitly the derivative (dg/d=z) of some function g(z,§)  Tmplicit
in this result lies another fact of some significance: A netesary and sui-
ficient condition that the addition of & term to the intégrand of o given
integral leave unaltered the corresponding Fuler™Chgrange equation is
that the additional term be the derivative (dy/digNof some function gz,
This follows from the first result because of the linearity of the Fuler-
Iagrange equation with respect to the in@egn\mld function f.

3-5. Geodesics o\ ¢

(a) We return to the problemafiosed above in 3-2(b) for the arc of
minimum length connecting twelpoints on a given surface. Such un are
is termed a geodesic for the surface. The special case for the plane,
presented in 3-2(a), is s{ﬂ%d in 3-4(a) above. According to (13) of
3-2(5) the integrand fungion for the problem is

\“ f =P+ 207 + Rv'?, (31)
where P, Q,.a@h‘}ﬁ are three given functions of the surface coordinates
% and v: ilNis/assumed that the minimizing arc has the form ¢ = ().

Accordiriﬁ to (25) of 3-3(h)—with u and » here playing the respective
rolesgof*z and y—v must satisfy the Euler-Lagrange equation which
1‘6{3&,"th.rough (31),

P |, 0Q , . 0R
HT¥ R TS

I ( Q + Rv
2P T R du\vP Fogr ¥ Boi) O

In the special ease where P, @, and R are explicitly functions of » alone,
this last result becomes

Q4 Ry ¢
NPTy + Rt @32
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an arbitrary constant. In the event € = 0, which is the case if the sur-
face- curves u = constant are orthogenal to the curves ¢ = constant,
v can he expressed directly in terms of i as’an mtegra.l-——namely,

_o [ VPa
VE =GR

a8 we obtain frem (32) with the facts that v = {dv/dw) and that P and
R are given functions of u alone. The constant of integration in (33)
and C; are determined so that (83) passes through the given fixed end
points, Q)

{b} Still supposing that § = 0, but now that P and R are explicibfuhe-
tions of v alone, we are in a position to use the result of 3-4(b}, wHich is
applicable in the case where fis explicitly independent of the independent
- variable.  Trom (28) of 3-4(6) and (31) of 3-5(a}—with @ f‘ﬁ'—}—\&'e abtain

% A N\
—_— P R‘U’z = C ,. }
VEiEe VTR &
AN
whence, since ' = (dv/du), A
w = VEdy (34)

VPR O

{€) As g particular case we comidelﬁ‘tﬁe geodesic connecting vwo points
on & sphere, The parameters uy v most convenient for describing posi-
tion on the sphere surface are. the colatitude v and the longitude u, with

)

¥ = & 8in ¥ oS 13,,\\ ¥ = & sin ¢ sin 4, Z = @ COs ¢, (35)

where g is the :ra-diu;s,éef’fhe sphere. 1t is directly verifiable that v is the
angle hetween theypesitive z axis and the line drawn from the sphere
center to the deSfghated point, that u is the angle between the 2z plane
(& > 0) and & “half plane bounded by the z axis and containing the
desxgnated point, and that 2 + 3 + 2* = %

From. (JQ) and (13) of 3-2(b} the parametrie equations (35) of the
spheré\give

P = a*sin?yw, K= aﬁ, Q=1

We are thus able to use the result (34} of (b) above to obtain

w=C dy _ csc? v dy
' Vvaisniy — Cisin?e A/ [a/Ct — 1] — cot?w
= — sip~! cot v C,

V{a/CH* -1
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whence it follows that

. . . _ a Cos t‘_ R

{sin Cy)a sin ¢ cos ¢ — (cos Ca)a sin v 81N % \7?7_0_1_)__271 0

With the use of (35) we see that the sphere geodesic lies on the plane
z

:csincg—ycosc-;-——-: =0

V{@/C)t ~ 1

which passes through the center of the sphere. Hence the familiar
result: The shortest are connecting two points on the surface of u sphere
is the infersection of the sphere with the plane containing the givempoints
and the center of the sphere—the so-called great-circle arc. O\

{d) To obtain the geodesic on a general surface of revolufign we con-
gider the surface \O

P

v+ 2 = |g(a)]* 7 (36)
generated by revolving the curve y = g(x), with @20, about the z axis.
A convenient parametric representation of this{qlgrface is

PAL

T = u, y = glu) cos v, }*= glu) sin n, (37)

which is readily verified to satisfy (36).” From (12) and (13) of 3-2(5)

equations (37) give directly N

NS

P=1+4[¢@ 'R =gl ¢ =0

The result (33) of (a) abgyeﬁs therefore applicable; from it we obtain

N\ .
z},}C V1 + [ (W] du

@7 ) s Ve - ¢

¥n 4-5(9.) t.hQ;Eé'neral geodesic problem is again considered, but from a
point. of Vlf\\wsbmewhat different from that taken in the present chapter.

3-6. ¢ Ihé Brachistochrone

@) With the results of 3-4 we are in a position to solve the brachis-
tochrone problem formulated in 3-2 (¢). The integrand

f= MQ (38)

\/y — Yo
of the integral (16) of 3-2(c) giving the time of descent is cxplicitly inde-
Penden.t of the independent variable 5. We may therefore write down
immediately a first integral of the Buler-Lagrange equation —namely,
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y'(8f/8y’) — f = Ci—according to the result of 3-4(8). TFrom (38) we
thus obtain

] Yy Vit

Vi -y)d+¥ Vy—

Solving this last result for ' = (dy/dz), we integrate both sides of the

resulting expression to obtain, on writing for the arbitrary constant

= C;L.

= (20)74,
_ VY = yody
\/20' — (% — o) N
T'o evaluate this integral we substitute A
{
Yy — g0 = 20 sin"’g; O T
with this (39) becomes N\
.\\
= 2a f sir:\2 = a{ff — sin 8) -I— &, (41)
2
o
where z, is the constant of integration. v
(b) Rewriting (40) and combining it wn:h (4I), we have
T = x5 + a{f — sin &), y = Yo + a{l — cos 6§} (42)

for the parametric equations of the .retlmred curve of most rapid deseent.
These are recognized to be the equations of the cycloid generated by the
motion of a fixed point on the @ibcumference of a circle of radius ¢ which
rolls on the positive side o{je given line ¥ = yo. It can be shown! that
by adjustment of the arbitrary constants a and o it is always possible to
construet one and onkyene cycloid (42) of which one arch contains the
two points betweer Which the brachistechrone is required to extend.
Moreover, this guel enders the time of descent an absolute minimum as
compared mthH other connecting arcs, (The constant y, is not arbi-
trary, but ig gwcn, according to 3-2{c), by
£ \

\m‘; - Yo = Y1 — %! (43)
-where ¥, is the ordinate of the starting point {(2n,y:), v the prescribed
initial speed, and ¢ the constant aeccleration due to gravity.}

The techniques we employ here to solve the brachistochrone problem
were not available to Johann Bernoulli in 1696. The method which is
essentially the one devised by Bernoulli to solve the problem is developed
below in Chap. 5.

! Bee Bliss (1), p. 55.
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3-7. Minimum Surface of Revoluticn
{a) In the problem of ‘‘the minimum surface of revolution’ given in
3-2(d) the integrand function
f=yVv1+yt (44)

is explicitly independent of z, so that we may use (28} of 3-4(b) to obtain
a first integral of the Euler-Lagrange equation.  With (44) equation (28)
becomes

ro ™\
¥y o
— e — l + v = C A
vity ! Vity ’ (O
2N\ ©
from. which we obtain directly QA
dy ,yf’t '
= —C —— e == —C H h_"l > CI ,
P= G| e O R ¢
or O
t —ebd
y¥ = b cosh —bk: (45)
where we write C; = —b, Cs = a; %8 ;;;ositive.

The curve represented by (45038 called a calenary; the corresponding
surface of revolution about thé® axis is called a catenoid of revolution.
In the problem at hand we e required to adjust the arbitrary constants
a and b so that the catqlgm?y passes through the given end points (z;,71)
and (z5,y2). The possibility of fulfilling this requirement is discussed
directly below:

() We choose @ one-parameter family of catenaries from among (43)
characterized by-the fact that every member passes through the left-hand
end point, ¢3%:). Thus for this one-parameter family the constants a
and b ar¢ related by the condition

O y1 = b cosh 29

\‘; b

which we obtain by substituting (z,,y1) for (v,5) in (45). Our problem is
to discover which, if any, of this litter of catenaries passes through the
second end point (£.,y:). In Fig. 3-2 there are plotted several of the
curves (45) through (21,4n). With this figure as reference we make a few
assertions without proof:

Every member of the family defined by (45) end (46) is tangent to
the dotted curve OF, the envelope of the family No member of the
family passes through any point B that is separated from (x1,y1) by the

,. (46)
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envelope. One and only one member passes through any given:point #
on the envelope, which is its point of ta:ngency Through any point G,
not separated from (xy,3) by the
envelope, there pass exactly two
members of the family,

The assertions of the above para-
graph reflect, as do those that follow, |
on the limitations of the theory as.
developed in our study. If, for ex-
ample, the point (xs,y.} is at B, no
member of (45} fits the required end-
point conditions and we conclude that
the minimum surface area is not
generated by any eurve of the form
y = y(z), where y(2) is twice differ- Fmisaz'
entiable. I# ecan be shown,! in this
event, that the minimum area is generated by the broken line whose
three segments are N

S
=202y 2y),y=0@=2r22/)2 =050y =y,

This is the so-called Goldschmidt dﬁsconﬁhueus solution.

But even when there is a unique catenary connecting the given end
points—when (zs,y.) les on the eil:#e]ope OF—it turng out that this
catenary does not render the syrface area a minimum. Once again, the
minimum is afforded by the Goldschmidt solution. The catenary does
not even provide a relatlvs\mm]mum in the sense of 3-3(c).

" In the case in which tWg catenaries of the family (45) fit the required
end-point conditionss 4 {22,y2) is not separated from (21,y;) by the enve-
lope OF-—a relative\g;ninjmum' of the surface area is supplied by the upper
catenary of the\ pair, but no minimum ares is generated by the catenary
whose point offangency with OF lies in the interval (z; < z < ).
Although the.entenon cannot be stated in simplé terms, we may assert
further.tha\ if {x2,Y2) is sufficiently far above (orto the left of) the enve-
lope, the upper catenary generates a surfate area that is an absolute
minimum. Otherwise it provides merely 4 relative minimum, and the
absolute minimum is supplied by the Goldschmidt solution. In every
cage the Goldschmidt solution—by which the surface area generated is
clearly »(yi + y3)—affords a relative minimum.

(¢) It is obvious that the information given in () above is by no means
supplied by the limited theory here developed. ~Nevertheless, since the

. ! 8ee Bliss (1) for » detailed discussion of this problem, with : proofs carrying beyond
the scope of the present study.
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principal aim of this work is to study the role of the ealenbis of vari.
ations as a branch of applied mathematics, we must be conient, quite
often, to bypass such sophisticated problems as those of existence, singu.
lar solutions, and the like.

3-B. Several Dependent Variables

{a) We now proceed to derive the differential equations that must be

satisfied by the twice-differentiable functions r{f), y{ty, . . ..z that
extremize the integral ~
i ) N
I = L flegy, o o g4, . . E L ¢\ (47
. N\
with respect to those functions x, y, . . . , z which Ii:(‘.l'l"j’f‘.'\'t' preserthed

values at the fixed limits of integration { and &, here ¢ <<t The
superior dot indicates ordinary differentiation \\'it.'h}\r:rspcct. i the inde-
pendent. varigble &, \

We denote the set of actual extremizing f\[ﬁ}tinns by <), v, - . .,
z(t) and proceed to form the one-parameterfamily of comparison functions

X() = o(t) + &®), YO -y KA, ...,
A = () + <0, (8)

where £, 9, . . ., [ are arb'itré.‘rs; differentiable functions for which
25N :
E(l) = &) ;\Quf) =qllz) = - - =¢h) ={{ty) =0 (49)

and ¢ is the parametér of the family. The condition (49) assurcs us that
every member of édch comparison family satisfies the required prescribed
end-~point cqr\lﬁlﬁtions. We see, moreover, that no matter what the choice
of £, \M ) ¢, the set of extremizing functions (1), y(t), . . . , 2{8) 8
a member® of each comparison family for the parameter value ¢ = 0.
Thugifi we form the integral

Y I(e) = f XY, ..., 2XY, ... 204 (50)

by replacing =, y, . . . , %, etc, in 47) by X, Y, . . ., Z, etc., respec-

tively, we have that 7(0) is the extremum value sought. We therefore
conclude that

I'oy = 0. (51)
it follows from (48) that

X=i4e, V=g5-+e, ., Z=i+4e (52)
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Using the rule given in 2-3(a), we form the derivative (dI/de) of the
integral (50):

o = | PRI BRI APSUTRUNI: AR A
[&}“ﬁl( R R TR A +®Zr+320dg

where we use (48) and (62) to derive the sequence of substitutions

(8X/3¢) = & . . ., (8Z/8¢) = {. Tt is clear from (48) and (52) that
getting e = O is equivalent to replacing X, ¥, L Z, X, Y,
by a4y ... ,2 &% ..., & respectively. Thus heca,use of (.51},\\%
obtain from (a‘%), on setting e = 0, £\
d 3 d d 8
ror- [((ZerLer Ly +f~w--+fﬁéﬂ - 0.
' ~ (54)
This last relation must hold for all choic \f the functions £(1),
a(), . .., £¢@. In particular, it holds fory#he special choice in which
% . .., ¢ are identically zero, but for Whl(‘.h £(f) is still arbitrary, con-
sistent with (49).  With this selection ﬂf £y, ..., Wwe mtegrate by

parts the sceond term of the second Stember of {54) to obtain, since

E(t) = £(t) = 0, ™

[ [?{{‘\ \jt (g); ]Edﬂ? 0. (55)

Since (55) holds for ally%/we conclude by applying the bamc lemma of
3-1{a) that O\

7o)
& af _ af
\\”\ d ( =0 (66)

Through gmilar treatment of the suecessive pairs of terms of the second
membog of (54) we derive like equations, with « replaced by y, . . . , 2.
Joining these equations with (56), we have

8f af af af of _dfdf
¥ _ &()_Q Y- ﬁ() 0, ..., ¥ ﬁ()
(57

for the system of simultaneous Euler-Lagrange equations which must be
satisfied by the functions x(f), y(#), . . . , 2({) which render the integral
(47) an extremum, '
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.. (b)- The readily verified identity - -

dfof . o .. . .. g._)
afz(a“* FrL AN L)

Ll a@)| iz @)

B e (IRt
af dfaf d
- ‘z[& B dt(T)J ~ o 69

. A
suggests an important first integral of the system (57} in the specil ease
in which the integrand function f is explicitly independent O¥Fthe inde-
pendent variable £. For in this case we have (9f/at) =X0; with (57)
this implies that the right-hand member of {38) vanishgr,f’}«.'.l.‘lm.:; wo have
a first integral K9 O
R %x+%y+"-+%£:{=&
of_the_ system (87) whenever (8f/9f) = 0; ({‘{\xis\an arbitrary constant.

_Other first integrals may be obtainedhdirectly from (57) in case [ is
explicitly independent of any of the dependent variables x, 4, . . . , 2.
If, for example, (8f/dx) =0, thelfirst of (57) implies dircetly that
(9f/83) = constant, et.

N

(69)

¢

3-9. Parametric Represent\a"tion

~ {a) The results of 318@.1;93 directly applicable to problems of the type
introduced in 3-2 ang &)hred in 3-5 to 3-7 when these are generalized so
as to include parametric relationships @ = z(¢), y = y(¢) between the
variables = and :y:,.\rather than have the solutions restricted to relation-
ships in wh@cb;}me of the variables is a single-valued function of the
qther, as, ,@béxample, ¥ = y¥(z). In some problems the requircment of
Sing}e-‘i@ltuedness is exeessively restrictive; for it turns out that the Buler-
Laig;rgm'ge equation—derived under the assumption that the exiremizing
fneiion is single-valued—may have for the solution which satisfies the
givén end-point conditions a relationship in which the dependent variable
is not a single~valued function of the independent variable. One caunot,
without further justification, accept such a solution as valid.

We proceed to show, however, that the extremizing relationship
bgt}veen- & pair 6f variables 2 and y is the same, whether the solution is
derived under the assumption that ¥ is a single-valued function of = or
that a more general parametric representation is required to express the
relationship between z and ¥. We do this by showing that the golution
of the Euler-Lagrange equation derived on the basis of the assumption
of the single-valuedness of ¥ a8 a function of z satisfies also the system of
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Fuler-Lagrange equations derived on the basis of the parametric relation-
ship between r and y.

Under the assumption that y is a smgiea-valued function of z, the inte-
gral to be extremized is given as

L= [T jeyadn, N0

where y is required to have the values y; and y; at © = &, and x = x..
Tf instead we use the parametric representation z = z(f), y = y(f), where
x{&) = a5, y(t) = y; for j = 1,2, the integral (60) is transformed through,
the rclationships

; L)\
yr = g—g = g dx = Sf?df;, '\ \“'(61)
where the superior dot indicates differentiation with resptjz{‘ft to t:
kW
I =f f(:c,y, )xdt \ y - (62}
du 'x.'\\.. .
The Euler-Lagrange equation co‘rresponding\:té' (60) is, according to
3-3(b),
af af X
— . 63
9y dx (By =0 _ (63)

According to 3-8(a) the system ef Euler—Lagrange eqjuations associated
with (62} ig, if we write m\

ﬁ-"'(xry;:‘""?:f'J")¥ f(-"‘«':y,-?! )x (yr = %)’ (64)
dg e 3y g _d (ag) a5
XL \d‘t( ) O oy @ 0. (65)
From (64) ey &‘ftam _ _ : _
of ., g _, L9009 _ & 66
gj*%; a—x:--f. iy yay (-.)

With the a.1d of the second relation of (61) and the identity (27) of 3-4(b)
we thus have .-

j;( ) dm(f— _—) =“£_'_ly [g_J; dx(ag ]4_?_%.::-_(67)

We further obtaln from (64]

8y _ af .
ay ay _4..--.\-_

; " _ ff;, -'-:.:'.; (68)
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whence, according to the second of (61), we have

d ag)_zi(a_f),
di\dy/ Tdx\ay

Combining this last result with the first of (68), and {671 with the
first of (66), we obtain the pair of equations

o _ d(a) _ ﬂ_:{(@iﬂ,

dr A4l \dx / dy  de \iy' ) ~
b _ 4 éﬁ)zi ﬂ_‘_f(_‘?f)J. A

oy di\dy oy dr \ay' “\'\4\

From this result we conclude that any relationship, .L;ingl,u;:{;\fhu-d o1 not,
that satisfies the Euler-Lagrange equation ((i3)-----dm-iyl'§fi oft the basis of
an assumed single-valued solution y = y{r} -satisﬁ?.\:\uim the system
{63), whose derivation requires no assumption of\Wigle-valuedness of U
as & function of z. We are therefore justified™Nf wccepiing i n valid
extremizing relationship any solution of thedingle Inler-Lagrnge equa-
tion (63); the single~valuedness assumptionemployed in its derivation is
shown to be unessential. o\

(6) Underlying the result demop&sﬁiutetl in (n} above is the assumed
possibility of representing the quaptity to be extremized in the two dif-
ferent forms (60) and (62). At 15 of course only to thoxe problems in
which the dual representatibn® is possible that the result is applicable.
The problems enumera%ﬁfiﬁ 3-2 are all of this class, as we may readily
verify. There are, however, other types of problems to which the result
is not applicable, hut™in these there arises no question of the sort that
leads to the inv&st:igation carried out in (a).

3-10, Unqgé}fhined End Points

Two ,S’ﬁ.‘:lple generalizations of the brachistochrone problem, for exam-
ple, indichte a necessity for extending the theory of this chapter to include
hithebto neglected problems involving undetermined end points:

(i) What is the are of quickest descent from a fixed point to a given
vertical line?

(1) What is the are of
curve?

The first of these questions involves the extremization of an integral
who_s e limits of integration are prescribed, but the extremization must be
carried out with respect to functions not prescribed at the upper limit.
The general case for such problems js handled in (a) below. In the
second of the ahove problems, we are given neither the u pper limit of

quickest descent from a fixed point to a given
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the integral to be extremized nor the upper-limit end-point value of the
functions with respeet to which extremization is effected; we are, how-
ever, provided with a relationship between these two undetermined
quantities—namely, the equation of the curve (supposed to lie in a
verticul plane} on which the descent is to end. The genersl case is
treated in (¢} below.

{a) We scek to extremize the integral

e
I= (" fayy)a,
N\
with x; and x; given, with respect to functions that attain the value 3.
for # = 23, but for which no value is prescribed at & = xz,’,\’fh".}he
manner of 3-3(b) we suppose that the twice-differentiable w2V is the
actual extremizing function and set up the one-parameter ﬁ{ﬁﬁﬂy

Y(z) = y(z) + en(z) S (69)
of comparison functions. The differentiable functi@‘n(a:) ig arbitrary to
within the condition D

2wy =0, SO (70)

and ¢ is the parameter of the family deﬁmgd“by y; for the value e = 0,
y(z) 1s a member of every family (69). .j;[‘hus the integral '

1) = [, Y, ¥, Ve (71)
&

—where, according to (69), ()
Syt | o)

~—is an extrernum for g\%: 6. Thus we have I’ (0) = O for all choices of #.

After differentiati@g'(?l) with respect to e aceording to (3) of 2-3(a},
we set e equal to efo-—equivalent, by (69) and (72), to replacing (¥, Y”)
by (y,y")—to ¢obtain ‘

S 2 (YL g

W) I(O)“f;l (a_y,’?+ayr7?)dx_0: (73)
with the use of (0Y/d¢) = 5 and (3Y'/d¢) = 4. Integrating by parts
the second term of (73), we get for (73) with the aid of (70)

Tz af_ d :a-f—):l . _

where 5, is written for »{zs). ‘
Since (74) must hold for al! choices of »(x) consistent with (70}, if must
in particular hold for those n for which n(zs) = 72 = 0. For such 5(x)

\ M

1o = a‘?g-
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the second member of (74) reduces to the integral alone; by application
of the basic lemma of 3-1(a} we conclude

of dfaf_
S 35(@) -0 (75)

With this result, and for general n(z) once again, the second member of
(74) reduces to its first term. Now, by choosing (xs) = 9. = 1, the
vanishing for all 4 of the term remaining requires fulfillment of the end-
point condition ~

of | _ .
il =0 Oy

°\

From (75} we see that the differential equation is dg;’g:fmincd by the
integrand function f, and not at all by the end-point gx}n(ﬁtionn-; for (75)
is precisely the Euler-Lagrange equation derived i'n,‘.f'icf?'(b) under the con-
dition of fixed end points. The two constants df\ntegration obtained in
the solution of (75), a second-order equationx,..'{{é determined by the end-
point conditions y{z:) = ¥ and (76)—provided, of course, a solution of
the problem exists. AN

The case in which the left-hand e;r;d ‘point is free is left for the end-
chapter exercises. The result is thescondition (76) applied at = = z,—
namely,

S 3

o
AN=Z | = 0. 77
e o
(b} Application of ’Pli‘e}ééult {(76) to the problem of the curve of quickest
descent from a fixed point to the vertical line x = =z, gives, for the inte-

;'i§a}“ j ¥

W T Vg wasen

Ty\a‘t‘ih; the tangent to the cycloid giving the quickest descent must be
eri;z'bntal at the intersection with the line £ = z;. The construction is
always possible.

It is to be pointed out that the result (77}, for the case in which the
left-hand end point is free’is not applicable to the problem of quickest
descent from a vertical liné to a fixed point. For (77), as well as (76),
is derived under-the assumpéion that the integrand function f is not
explicitly a function of the value of y at the free end point; but as we
see from (38) and (43) of 3-6, the brachistochrone integrand function
f ds-e'pél;ids explicitly iipon y;. - The problem of most rapid descent from
& given-curve to a fixed point’is handled separately in 3-11 below.

0 for x = x..
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(c) We seek to extremize the integral
= [" fayy e @8)

with respect to functions which attain the value y; for z = z; and which
satisfy the given relation .

glzy) =0 (79
‘'zt the upper limit of integration, as yet undetermined. 7o thiz end we
set up the one-parameter family of comparison functions ~
Y{z) = ylx) + en(a), .\TSO)
where y(z) is the actual extremizing function, and n(z) is arbrtrary to
within differentiability and N
7(z1) = 0, LV (81)

which ensures that all the comparison ares pass through the prescribed
paint {21,11). The point of intersection of a coiparison are y = Y ()
with the given curve (79} is dencted by (X 2,1"%“ For the special case

= (- the actual extremizing arc—(X,, Yg) 15 denoted by (z5,:). We
thus have, with (80), Q

"“

WXL =0, VaSW(Xy) + en(X). (82)

Since these relations hold for all'e, we have that the total derivative of
g(X.,Y:) with respeet to ¢ mudt wanish. From (82) we therefore obtain,
onh noting that X, 13 a funcxmbn of ¢ alone for any given (x),

_?_g_’dXz a{f i
aX2 dG aYg dE

ag d}k‘z
= aXeV + 57, aY [ (&) e

We set e = {), whence X,, ¥y and (dX./de) become respectively x,, . and
(dX e/on; solving (88), with ¢ = 0, for the latter quantity, we obtain

aX\ _ _ - m(@g/oyn
(._d?) a (39/5‘%) + Gg/oyyyy (84)

where we write 7; = 5(%s) and g5 = ¥'(z:). The resul (84) is employed
directly below. '
We form the integral

0 =
ng

4 p(Xo) + e (X OX ] (83)

10 = [ 5, ¥, s
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by replacing s, %, ' in (78) by X5, ¥, ¥, respectively, where
Y = y'@) + en' (@),

according to (80). Thus since X, ¥, Y’ reduce to the respective extrem-
izing quantities s, y, ¥ for ¢ = 0, we have that [{0) 1s an extremum,
so that 7'(0) = 0. Using the rule (3) given in 2-3(a), we form the

derivative
af af ) _
X!+ ,[31 ( n—{—a}/f dx,

since (8Y/d¢) = nand (8Y'/3¢) = v'. Setting e = 0 und then jnbeprating
by parts the second term of the integral on the right, we oht m\\ with the
use of {81}, . QO

TR COLRE RSN )i R

With the aid of (84) this becomes

dX
o =

,:l\‘
2 .. NS
al Gl (af)} ~ 0,
ay’im g + o Ay ?I*z:l' [ay dz n
dzs 2 @ ER

for all choices of 5 GOIISlbtUﬂt mth (81}. Repeating the line of argument
earried out in {(g) abovewwth application of the basic lemma of 3-1(a}.
we conclude that § y(:c) satisfies the Fuler-Lagrange equation (75)
and, in addition o the left-hand end-point requirement y(x;) = y1, the
right-hand endfpornt condition

\&

9 af _ Byz _8_,
\§ @Ll g N B¢ = (. {83)
) .\’: 3 ar; e E

A similar result for z = 2, is t0 be obtained if the left-hand end point s
required to lie on & given curve R(z,y) = 0. In this case (9g/dx) and
(dg/dy2) ave replaced by (8h/8z1) and (9h/9y,), respectively, in the end-
point consition.

(d) For the curve of guickest descent from a fixed point to a given

curve g(x,y) = 0 application of the end-point condition (85) to the inte-
grand (38) for the brachistochrone gives the result

IR

> 4 §1.,
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Since the slope of glx,y) = 0 at (2.,y2) is given by the negative of the
coefficient of y,, and since y, is the slope of the exiremizing curve at
(2s,y2), this relation implies the orthogonality of the two curves at the
point of intersection.

8-11, Brachistochrone from a Given Curve to a Fixed Point

The solution to the problem of the are of most rapid descent from a
given curve

hzy) = 0 (36)
to a fixed point (z4,y.) is furnished by the function y(x) which extremjzes
the integral PR 2

1= [T flnyyae AT 6

with respect to functions which attain the value y. for.a:’{é‘ 2 and which
satisfy the given relation (86) at the lower limit of\ittegration, as yet
undetermined.  The function f is given by e\

FEEE e 2
\/1 i}— i N i (88)

according to (38) and (43) of 3-8, whefeh »; and ¢ are known constants.
To solve this problem we set up ﬁhe one-parameter family of compari-
son functions

}.’in= y(x) + en(z), (39)

where y(2) is the actuslextremizing function, and #(x) is arbitrary to
within differentiabiligycand

2 nw) = (90)

s0 that every, c%’lpanson arc passes through (#5,y2). The point of inter-
section of a. Eomparison arcy = Y{(z) with the given curve (86) is denoted
by (X g \1) and is denoted by (z1,1) when ¢ = 0-—that is, for the actual
eictrcn\am&, arc y = y(x). We thus have, with (89},

WX, Y1) =0, ¥ = y(X1) + en(X), (1)

for all e. Taking the total derivative of A{Xy, Y1) = 0, we obtain from
(91), in the manner used to reach (84) of 3-10(c),

(@}3) _ m{(9h/By1) (@) . ‘?11(3}1/3-1?1)
de Jo (0hjoz)) + (Bh/oyyy  \ de
(2)
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where we write m = #{21), yi = y'{zs), and (dX\/de)o, (dY,/de)o for
(dX./de), (dY1/de) whene = 0..
"The special dependence of the integrand function (88) on y and y, pro-
vides another formula useful directly below—namely,
af af
L = - =i g
3y 8y 43)
This may be verified directly from (88) or be recognized as an immediate
consequence of the fact that y and y, appear in f in the combination
(y — 1) only. \
We set up the integral

a
2\

e = [X FYLY,Ydz O ' (94)

by replacing =i, gy, ¥, & in (87) by Xy, ¥y, ¥, ¥/, :r:ésp:éctively, where
Y’ = y'(z) + '(x), according to (83). Since Xuy V7, V, ¥/ reduce to
the eorresponding extremizing quantities for’e =\0; we have that (94) is
an extremum for ¢ = 0, so that I'{0) = 0. Using the rule (3} of 2-3{a),
we differentiate (94) with respect to ¢ then 86t ¢ = 0, Lo obtain

- dxi) | = aff’d'h) af of
P =0 = —[22} ) el v o .
( ) de Gfm + /;1 ];a:’;h de /. -+ ay'ﬂ -+ ayr b d.
- () 4 B () [
(d6 ﬂfx;. "’ay!m m + _&: 0tz a_ihdt
KA *’é{_;{(ﬂ_f} .
Q™ +£. [69 F\ay ) |7
in which the finalfform is arrived at through integration by parts and

subsequent use, 6£{90). With the help of both equations of (92) we are
led to the result/

2 oo
Nt 091 af [ af
M a8 2  nd vV a i — v
! {3& a_hv ' Y| + ok ﬂ y: 9y dz
1
i

\m§ Bz oy 8z

ay
+L {%“%(%)]ndx=0. (95)

Sinee (95} holds for all 4(z) which satisfy (90), it holds in particular
for those #(x) which also satisfy 9, = 7{x1) = 0. For such »(x) the left-
hand member of (95) reduces to the second integral alone, and we may
apply the basic lemma of 3-1{a) to econclude

3 _ dfof | .
e a:(‘a?)"*}- (96)
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With this result, and for arbitrary » once again, (95) reduees to the term
proportional to 5,; thus by choosing 5(z) so that 4, = 1, we obtain the
condition

Oh oh
lan  _a  Em N
b 9 3yl T, =0. ()
axy ayl # T a“?}:- ¥

Because of (93) and (96) the integral of (97) is readily evaluated as

T e o [T s [T AU O
| o = f ay f i) = 2. a2

Ny

With the use of this result, (97) becomes, at length, A\
of| ok (af . N
oz T (6?;’ vt

ay’
But sinee f is explicitly independent of x, we ma’@x\ljse the result (28) of
3-4(1), wherehy (96) implies ,\

B &f; f 3 !

(@ =)

With the aid of (99) and (88) equdtion (98) finally resds

_[@j/ (;_;:)] - ?‘i (100)

o O
— = N 98
x1 ayl 4 ( )

where 4, = y'(x2) is’ tl‘;é'élope of the extremizing curve at the right-hand
end point {ia,y2). .'}Sihce the lefi-hand member of (100) is the slope of
h{zy) = 0 at tHe)left-hand end point (zy,3,), this final result expresses
the intercsting ¥aet that the tangent to the brachistochrone at the right-
hand end,{f),drint is perpendicular to the tangent to the given curve
h{z,y)/=0/at the left-hand end point! (The brachistochrone is again a
t:y(:loih}ifmsmuch a8 the extremizing function must satisfy the same differ-
ential equation (96) as in the fixed-end-point case handled above in 3-6.)

EXERCISES

1. {a) Carry through thé;detaﬂs of the proof of the basie lemma of 3-1¢z) in which
7(2) i assnmed to be fwice continuously differentiablein : S ¢ = x..

(®) Extend the proof of the basic lemma to the case in which n(xr) is required to
Possess & continuous derivative of kth order in addition to satisfying (2). Hine: If
G(-’C) >0inz, €2 = 1), letn = [(z — z,){z; — £} in this subinterval, with p = 0
in the remainder of z, £ 2 < 2.

=
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(e) Proveihat@G{z,y) = 0identieally in D is necessary for the vanishing of (6} for all
continuously differentizble 9(z,y) that vanish on C, provided G(z,y} is continneus in D.
Hivr: i Gey) >0ine, S S, ¥ S ¥ S ¥ let 7 = 0 everywherc in I outside
this rectangle; in the rectangle let 5 = [(& — s}z — 2y = ¥y — ¥a)l®

(d} Extend part (¢) to the case in which 4 is required to have continuous partial
derivatives of all orders up to and including the kth, Hixrt: Bee part (b)) above.

{¢) Extend the basic lemma to integrals of multiplicity m, with 5 required to satisfy
differcntiability conditions of the type required in part {d).

2. {a) Regarding the left-hand member of the obvious inequality

f * lg(x) + i) dz 2 0

1 ’\

a8 & quadratic function of ¢, where { is achitrary, prove the (Schwarts's) inf’.‘quslil-y
Z '\

NS ¢
f”hzdm f"’ ¢ du 2 U“gh dz}’, \ (101)
Tl 1 Ty ( *."‘.
where the equality sign holds if and oniy if g{z) = Ak{z), whgﬁ{ @'is sore constant.
(I Given that y{z1) = 1, y(zs) = y- and that p(z} is a’Khown function, use {101)
to prove that the shsolute minimum of \
o>

= [ pyt dz (102)
is l O ‘
e —gh o
2 Hod

and that this miniroum is attaiue@"if and only if

¢ \J

’ \\ - ¥ = ;Tli’ (104}

where 4 is an arbit:rai}y constant. Hrwr: f = vde =y — y.
E1 )

(c.) Show that, {lb'f) a !ﬁrgt integral of the Fuler-Lagrange effuation associated with
the mtegrai[' 02). Thusilt 15 shown that the extremum of {102} is an abselute mint-
muni, Ve}uf} hat (193) is the value of (102} when (104) is substituted.

' s. (a)'jShow that, if y satisfies the Euler-Legrange equation associated with ihe
infepeal
\ b 2
= f P + gy)da, (105)

where p(z} and ¢(z) are known functions, I has the value Py ]"_
T

() Show that, if v satisfies the Euler-Lag

) v ; range eguation i ith {105},
and if 2(2) is an arbitrary differentiable funetio b rosociated with |

n for which
then | ) = 2(zs) = 0, (106)

=)
Ll 0%’z + gPyedde = 0.
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Henee show that by replacing ¥ in (105) by the function (g + z), where the condition

(106) ensures that # and {y + 2) have the samoe end-point values, the value of 1 is
increased by the nonnegalive amount

L:l (pSzQ + q%zﬁ)dx_

Thus it is shown that the extremizing function y renders (105) an sbschzte minimum
with respeet to differentiable functions assuming the required end-peint values ¥

and .
4. () Given
xra N
I= [: T,y )z, 0h
a]
reverse the roles of dependent and independent variables in order to rewrite, ( lb’i}in
the form . \
v P
1= [ gwara, O aos)
where 2’ = {dz/dy). ~N

{b) Write down the obvious first integral of the Euler-Lagrang@quation associated
with {108}, according to 3-4(a). Rewrite this first integra] in térms of f and with =
once sgain as independent variable, in order to achieve i e’:%ﬂt (28} of 3-4(B).

This method of deriving (28) should meet, the ohjectiétyoften raised against pulling
the identity (27} out of thin air. Hrvt: This deri¥atién is implecit in the work of
3-9(a}, up to and including the second of equationg\(66).

8. Show that the family of geodesics on the pakiboloid of revolution

x=u,y=\/§'ca§.'ﬁ,é=\/isinv

has the form ¥y

u — 0% = u(l + 4C%) sip.?o\f«zzb 2C log k(2 Vi — C* + /& T 11},  (109)

where € and % are arbitrary cohstants. Although ¢ is in general not a single-valued
function of « here, the validity;of (109} rests upen the result of 3-9(a}.
6. (o) Prove that :mxéqadesic on one nappe of the right circular cone
:"\'.z.

Q
has the foll()\w"infg:bropcrty: If the nappe is cut from the vertex along a generator and
the Sur[ac&sdf"}he conc is made to lie fiat on a plane surface, the geodesic becomes s
straight fine) Hint: Show first that, if the cone is described in terms of the param-
eters r, 9 in the form

22 = B2yt + 27) (110}

g =t _reos (6T B  _rsin (0VI T8
Vive Y V18 I+ b2

which satisfies {1 10), the variables r and ¢ represent ordinary polar coordinates on the
flattened surface of the cone, with the origin at the vertex. Identify the geodesic
T = r{8) as the equation of a straight line in polar coordinates.

{2) Prove the analogous property for geodesics on a right cireular cylinder.

{¢) Prove the same for an arbitrary cylindrical surface.
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- 9. (ay Derive the differential equation satisfied by the four-times-diffcrentiable
function y(z} which extrenizes the. integral :

= .Li f(x:y.ly”y:”)dz

under the condition that both y and ¥’ are preacribed st #: and 2, -
{5) Bhow that, if neither y nor y' is prescribed at either end point, the conditions

o _o AL (af)
ETE sy dr \ay"

must be met at z = z;and & = 22

(¢) Generalize the result of {¢) by supposing N
f = f(xsysy’v s ;y(“)}} ’.\:\
whete y'* designates the nth derivative of y{z) 4 :\ ’
8. {a) Show that, if we define ~\
19 = [T i@ rds X7,
1 ,

as in 3-3{(b), we have

T \
0y = f “1" gﬁ—ln' dz\)

AL ¢
W

Thus we conclude that, if (3f/3y) = Oand WO
a \ o
Hzo famseso, a1

the extremum I{0) is surely a m;mmum 1f & minimizing function of the single-vatued
form y = y{x), with y twice dlﬁergntmble exiats.  {(The inequality {111} is meant to
exclude the identical vanishing of 49%/dy'?) in the interval.)

(6} Show that the functlon"}‘ or the geodesic on a surface of revolution 3-5(d)
satisfies the conditions of

9. Show that, 1f Y1 = m, no catenar—y of the family (45) passes through {z.y1) and
{m2,ye) if

C\ 4
\’ _W?’ o ¥ T T 112
. s eosh p < 2y1 12
where p is ﬁ(z.ﬂegatwe root of :
psinh p — cosh p = 0. {113)

Hing* \Flrst show that & = I{x, + 22) when ¥ = y; and let p = [(x; — a)/b). Next
mvy “that equality of the two mombers of (112) is required for a catenary to pass
hrbugh both end points. Henes, if the mazimum of the left-hand member of (112]

is less than the right ha,nd member, there isno p for which equality can obtain, Show

Approximatdly, (112) rcads (e — zl) > I 32;;1

10. Use Eulers theorem on homogeneous functions (2-5) to prove that the first

integral (59) reduces to an identity, with C,.=.9, when. f is homogeneous in
# ¥ - . . 5 20f the first degree

11. (s} Show, in 3-10{g), that, if neuther end-pmn‘o vaine is prescribed, both (76
and (77) must be fulfiled.

() Generalize the repult of (g} to the cage of several dependent variables.
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12. Derive the result of 3-10{a) as a special case of the result of 3-10(¢) by choosing
glzg) = — z2. NOTE: The notation (3¢/9z:) is an abbreviation for (dg/as)
evaluated at £ = 22, ¥ = yr—and similarly for (5g/ays).

13, {a) Show that, if
F=ply) v1+y?

the condition {85) requires the orthogonality of the extremizing arc and the given
carve g(z,y) = 0, for all plx,y).

(5) From (a) it follows, with the result of 3-4(a), that the are which extremizes
the length from & fixed point to a given plune curve is & normal drawn from the fixed
point to the curve.  Using the methods of elementary differential calewius, demo
strate the role played, in determining whether the normal represents a minimum “or
maximum diztance, by the position of the center of curvature of the given curve’at the
point to which the normal is drawn. In what case is the distance neither a.néiﬁimum
por maximum ? W W

14. (o) A brachistochrone is required to be constructod from a“given curve
Rizy) = 0 to 2 sccond given curve glz,y) = 0. What relationshiphyinust the two
given curves bear to one another at the respective points of intérsection with the
brachistochrone? v

() A brachistochrone extends from the line y = © - 4.t the parabola y* = x.
Show that the point of intersection of the brachismchru{é;}ith the parabola is (1,3}

P
N

»
N/



CHAPTER 4
ISOPERIMETRIC PROBLEMS

We consider in this chapter a class of problems in which the functions
eligible for the extromization of a given definite integral are required to
conform with certain restrictions that are adder o the usual eolinuity
requirements and possible end-point couditions.  [n the cuse @ mreatest
importance for application and extension in chapters followie, “he addi-
tional restrictions reside in the prescription of the \‘illtl}iﬁgi;f cortain gux-
iliary definite integrals. We call problems in which m_ivi]"mmIiiinns are
involved isoperimetric, after the best known problefm{of the class  that
of finding the cloged curve of given perimeter far’ which the area is a
maximum. Further, we briefly treat cases in aphith the additional restrie-

tions are expressed through ordinary finigé équations or through differ-
ential equations, PN

4-1, The Simple Isoperimetric Pmﬁler;l

{@) We seek to derive the diﬁg‘t:éﬁtia.l equation which must he satisfied
by the funetion which renders'the integral

.\x'ja\l = [ oy (1)

sl extremum \.vit'h' respect fo continuously differentinble lunetions
¥ = ylx) for whi€h the second integral

A &2
A\ J =L glz,y,y ) dx (2}

L

posseg.sig_ss\a given prescribed value, and with y(x,) = y,, y(2s) = y. both
presotibod.  The given funetions f and g are twice differeniiable with
fospect fo their arguments.

n essence we follow the procedure of 3-3(b) by letting y(x) denote the
actl:tfi.l e;x?remizing function and introducing & family ¥ (z) of “‘com-
p:i..rlson" tunetions with respect to which we carry out the extremization.
We gfannot, however, express ¥ (x) as merely a one-parameter family of
functions because any change of value of the single parameter would in
gen..eral alter the value of J, whose constaney must be maintained as pre-
soribed. For this reagon we introduce the Ewo-parameter family

y.

Yz} = yiz) 4- am(x) + emela), (3)
48
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in which m{x} and () are arbitrary differcntiable functions for which
iz = nixe) = 0 = ya(y) = o{Za). (4)
The condition (4} ensures that
V{es) = ylzy) =41 and V(@) = y(wa) = w,

as preseribed, for ull values of the parameters ¢ and €.
We replace y by ¥(x), given by (3), in both (1) and (2) so as to fOTQl
respeetively

I{e1,62) = fnf(:c, Y,¥dz w\:\ (5)
] x1 4 ‘\ o
ant C

-

Jewed = [T 9@ ¥,V)de. ®)
AY
Clearly, the parameters e; and e are not independertibecause J is to be
maintained at a constant value, it is clear from (6)'that there is a func-
tional reluation between them—namely, \\

J(e1,e2} = constant ’(Iﬁfgeécribed). (7)
Sinec y(r) is assumed to be the act;l\lg»l;l{éxtremizing function, we have,
because of (3}, that (5) is an extretaum with respect to values of e, e
which satisfy (7), when & = ey O—for arbitrary choice of the func-
tions u; and 9, consistent wit-l} i(4;} (It should be noted that the definition
of y(z) implies that (7) is si‘bis’ﬁed fore; = e2 = 0.}

{b) The procedure of (@) above reduces our simple isoperimetric proh-
lem to the elementary@ask of determining the conditions which must be
fulfilled in order tha@ﬁhe ordinary function I(eye;} of fwo variables e, e
be an extremum ginder the restrietion (7). To solve this problem we use
the method ofbagrange multipliers described in 2-6.  We thus introduce

the functiontef e, e
4

O 1 = It + Moo = [“ @1, ®
where; according to (1) and (2),
5= g ©)

The constant ) is the undetermined multiplier whose value remains to
be determined by the conditions of each individual problem to which the
method is applied. Thus, according to 2-6 and (a) above, we must have

or* = oI =0 when ¢; = e = 0. {10)
861 669
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From (&), with the aid of (3), it follows that

ar* = [af*aY | of aY’} _ f = laf* af* }
E;,' = Ll IW&: + aY! ae’ dx . a']/ ni + a}v; s
G =12, (1

Setting &1 = ¢ = 0, 0 that, according to (3}, (¥,¥") is replaced by (y.4),
we thus have that

oI* ™ af* f } N o :

because of (1{)) (The symbo! |o indicates the setting of e = &)= 0.

Integrating by parts the second term of the integrand of (12) weohiain,
with the aid of {4), \

@ fare  d faf* _ .#';3 )
[l - &)} oo GL )

Because of the arbitrary character of the functions g.(z) and na(x) the
{wo relations embodied in {13) are essentiall(fo}xe'. At any rate we apply
the basic lemma of 3-1(a) to either and s¢Obtain the differential equation

a* 4 (A
oy da: ) 0 (14)

as the Buler-Lagrange equation .Whlch must be satisfied by the function
y(z) which extremizes (1) vnder the restriction that (2) be maintained
at & prescribed value. ()

Solution of the seco\xﬁ-order equation (14) yields a function y(x) that
involves three undefermined quantities: two constants of integration and,
beeause of (9), théLagrange multiplier \. If the solution of a given 180-
perimetric problem of the type under discussion exists, these quanti-
ties are ﬁ{&ﬁ by fitting ¥ = y{z) to the required end-point conditions

y{%) ‘“‘yl and y(z:) = y2 and by giving to the integral J of (2) its
prescnbed value,

‘4\-2. Direct Extensions

. Sin_c-e the methods embodied in the paragraphs following are essentially
identical with those employed in 4-1 and in various sections of Chap. 3,
each result is stated with only a bare outline of the mode of derivation.
Many of the details are called for in exercises at the end of this chapter,
‘ (@) In a somewhat more general isoperimetric problem than that which
1s treated in the preceding section, we seek to extremize the integral

= [* feyy)de (15)
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with respect to continuously differentiable functions y(z) for which the
N integrals

o = f pleyyldr (k=12 ... .¥) (16)

possess piven prescribed values, and with y(z) = ¥, y(22) = y. both
preseribedd. By introdueing an (N + 1)-parameter family of compari-
son functions Y {x) and subsequent application of the method of Lagrange
multipliers as in 4-1(b}, we should directly reach the conclusion that the_
extremizing function y(z} must satisfy the Fuler-Lagrange equation, (14}

of 4-1{#), where here A\
N &\ |
Pt Y A an
&=1 4D
"
the constants Ay, Ay, . . . , Ay are the undeterminedNnultipliers whose

values we may ascertain through the specific cond{&ons imposed in any
given problem. The details are left for exeruss\:i(a) at the end of this
chapter. N

(6) A combination of the argument c@med out n 4-1 with that of
3-10{a) yields the conditions which mugt*be satisfied by the extremizing
function when one or both of the end-point valucs is left unspecified in
an isoperimetric problem. If neithér “end-point value is prescribed for
the functions eligible for the extremization of (15), with the condition

(16), we must have \\i’
af* Oy
— =0 forz =z and x = 1y (18}
ay:‘\
<

f*3s given by (QTn"Y If one, but not the other, end-point value of y is
prescribed, thel tual extremizing funection is such that (18) is satisfied
at the other gnd point.

(¢) Apglichtion of the analysis of 3-10(c) to the isoperimetric problem
in whichune end point of every arc y = y(z) eligible for the extremization
1s required to lie on the curve k(z,y) = 0 yields the condition

of* (8h/ay)f*
3y’ (8h/9z) + ¥ (Oh/0Y) =0 (19

that must be satisfied by the extremizing function at the end point in
question, Again, f* is given by {17) of (a) above.

{(d} We may combine the argument of {a) above with that of 3-8(a)
0 arrive at the system of differential equations which must be satisfied
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by the functions which extremize the integral’

7= ﬁ‘ fay, . . mby, - S0 (207
with respect to continuously differentiable tunctions «(t), y{t). . . ., 2(f)
for which the ¥ integrals
Jk = ﬁh Qk(it,y, R :zr"i;:yl! oo 12"”)[’” U‘ = 1‘2’ D NJ (21)
' N
possess given prescribed values; it is further supposed that the\eligible
functions x, y, . . . , # achieve prescribed values at ¢ = {t{ Wl § = .
The required cquations are W\
arr  d (ot ofr _d (?fj) -0 ~‘
Oz dz(a:;ﬂ =0 T @\ SRV
e d af*) ;
~ 2 Y Y =0 (22
owe dt (62 (22)

where f* is given by the expression (1Thbut in which f, g1 g, . . ., ¥
are the functions which appear in the mtegrands of (20} and (21). _
{e} The roethods and results of, jfg’-‘l(a,b) and 3-8(h) are direetly apph-
cable to jsoperimetric problemsi ™
(U If f* is explicitly indgpedent of the dependent variable y, o first
integral of the Euler—Laglja"\ﬁge equation {i4) is
§ '\‘"': ar*
A a_f?} -0, (23)
where €, is ’;a;ﬁitrary constant.

Gy I f’f»iigexp‘licitly independent of the independent variable », a first
integra}{)ﬁ‘the Euler-Lagrange equation (14) is

™

R\ of*
A M 4
"‘\“ w ? ay! f Cl ' (2 )

\\'it-.h.. €y an arbitrary constant (not necessarily the same as C; in (23))-
' (iii) If 7* is explicitly independent of the independent variable ¢, u first
integral of the systern of equations (22) is

e ot . )
i+ 2L pao, (25)

where C; is an arbitrary eonstant.

LIA]s]‘m 3-8, the superior dot. denotos differentiation with respect to the independent
variahle §,
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(f) The argument and results of 3-9 are directly applicable to the iso-
perimetric problems of {a), (b), (¢} above (and therefore to the special
case of 4-1); that is, although the derivation of (14) is based upon the
tacit assumption that the extremizing functicn y(x) is a single-valued
function of r, we may accept as valid any solution of (14)-—satisfying
the pertinent set of end-point condifions—-4n which the single-valuedness
requirement is violated.  (The remarks of 3-9(b) must of course be taken
into account .}

4-3. Problem of the Maximum Enclosed Area A

oA
(@} The original isoperimetric problem may he stated as foﬂom\“W(
consider the aggregnte P oof all elosed non-self-intersecting pl@lle curves
for which the total length has the given value L. Of these e seek one
for which the enclosed area is the gruatebt m\
With the means atl our disposal it is necessary that wo nake the restric-
tive assumption that the parametric representathn\\,

=),y =y@O" (26)

of any member of the aggregate P is suckthat the funetions (26) are
continuously differentiable with respeqt:ﬁ’é {.  PBut without loss of gener-
ality we may suppose that the representation (26) describes any given
curve of P in the counterclockwisesense as f increases from &g t0 #s; since
the curve is closed, we have x(}\) = z(ts) = zo and y{l) = y{t) =
It i3 no essential restriction “t\o\su;]pose that ¢, ta, o, yo have respeetwcly
the same values for every’member of P.

According to 2-7(c), Ghe area enclosed by a given member of P as

described by (26) is '&be integral
"\‘

A =3 ﬁ (e — y&)d, @70
where & = (@‘x’}d.f), 4 = (dy/dt}. The total length of the curve, given by
N 7= [SVEFP (28)

has the same value L for every member of P. We seek the particular
functions for which (27) is an extremum {maximum, in the present case)
with regpect to functions z{f), y(t) which bestow upon (28) the gwen
value L and for which (i) = z{t2) = o, y(t) = ylta) =

From 4-2(d) we have that the maximizing functions must satisly the
§ystem of equations (22)—namely,

of* _ d (o ar (fi) -
o dt( ) O Ty @ ’ @)
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_where, according to (17), (20), (21), together with (27) and (28},

£* = ey — g3y £ 2V @t
Direct substitution of (30) into (29) yields

1., _d ___1- 4 ME )=0'
5¥ 3}( MY, T

._.1'.._d lx_g.. R.E.-._):O, ~\
3" 31(2 VE Ly ‘

. . AN
from which we obtain, by direct integration with respect tpd, ™

G N £
—_ e = 1 x TN C H 31‘-:‘
Y /--——‘—'—-*—--:&2 + 'gz 1 + ‘\/,’62 +M’.(2’\’ 2 (

with €y and Cy arbitrary constanis.

With the introduction® of {(dy/dz) = (y/&pbeth of (31) may be inte-
grated in a conventional manner. We aghieve the same result, however,
by solving for {y — € and {& — Co\then squering and adding the
equations obtained: o\

(e — Co2 ety — €2 = 2 32

Thus we have the well-kfown result that the closed curve of gi.ven
perimeter for which th@ieﬁelosed ares is & maximum is a circle.? Since
the location of the citcle’is immaterial, the constants of integration U 2
and Cy—the coordihates of the centfer, according to (32)-—-remain arbi-
trary. Also, sigo®X? is the square of the radius, we have A* = (L/2r)%
where L is the gtven perimeter. )

{b) A problem closely related to the original isoperimetrie problem I8
the following: We consider the aggregate P’ of all non-seli-intersecting
plangiares for which the total length has the given value 1/ and whost
H{d.\ points He on the » axis. Of these we seek one for which the are

Sepclosed by it and the  axis is the greatest.

For the sake of simplicity we let y = y{z) represent any member o
the aggregate’ P’ and make the restrictive assumption that y{(z) 1
continuously differentiable. Without loss of generality we may suppos
that the left-hand end point is fixed at the given point (z,,0): the right
hand end point (25,0 is unspecified.

1 Bee end-chapter exercise B,

*In view of the restriction that () and y(t) be continuously differentinble for a

functions eligible for the maximization, cur result, strictly, should read * . . . tht
the closed smooth curve, . . '

* The choice of this {ype of representation is justified in 4-2{f1,
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The area enelo-ed hy any member of P and the z axis is given by
Iy
= L y dz; (33)

the total length, ctual to the fixed value L’ for every member of P/,

is given by

= [ VTFT 34

We seek the ¢ ution of the particulur are for which (33) is an extremum
{a maximum; with vespeet to ares y = y(z) whose left-hand end poingsh
coincide at (x,.01, whose right-hand end points lie on the curve y o 0,
and which give to (341 the prescribed value 1.

To this end we apply the Euler-Lagrange equation (14) of ési(b) to

the integrand

P e IR (35)
derived from (33) and (34). We thus obtain AV '
e
ar \WT+Y?
whence, by direct integration, ,j{' R

mnyt ®
NN
ol

Ay
21 +<?j'2
From this it follows that QO
Nt — e

@ = - O
and therefore that. :'\~
& — A= (z ~— Cy?+ Ca

NV ¥ =F
\ (c — C)r + (y = C* = M

or

{36)

\ \
To rrve the condition which must be satisfied at © = &z We apply
the end-point relation (19) of 4-2(c) to the integrand (35), with y =0
a8 the curve k(z,y) = 0. With this we obtain
N - pt2 ,1+y’2=0 at & = ¥z,
V1 F 2 ¥

O since y = ) at z = z, and since A = 0 is ruled out by (36), we have

1 ={) at r = Tun (37)

v VItV
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The fulfillment of (37}, clearly, 1s possible only if the maximizing are
possesses a verfical tangent at T = . This fact, combinei with (36),
directly implies that the required arc is & semicirele of radius (L7 /7).

4-4. Shape of a Hanging Rope

We may apply the result of 4-1(b) to the problem of deternmining the
shape of a perfectly flexible rope of uniform density thuat hangs ot vest
with its end points fixed. The basis for this application resides in the
physical prineiple which states that a mechanical systew i - Lableequi-
lbrium is characterized by a minimum of potentinl encrgy conmi=t &gt with
its constraints. ¢(\A

With the trivial assumption that the rope hangs in a €0 ieal plane
we let 4 = y(2) be a representative member of the wgwkduate /2 of all
possible configurations (in the vertical plane do.tcrmini;‘t{ v the fixed end
points of the rope) that may be assumed by l.lm"!'g\;'m, eons=tsfeni with
the facts that its end points are fixed and its tadil length has (lie given
value .. The coordinste x s measured lloz'i,mjn}t-ﬁ.lly i the verdenl plane,

and y is the upward distance from a fiyeth horizontal reference plane.
(According to 4-2(f) the designation y(=%(x} is not exvessively vestrie-
tive in the event y is not a single-valwed function of » in the ppuilibrinm

configuration.) Thus, if ¢ denotgsithe constant mass per wnit Jength of
the rope, the potential energy .Cliérlé,ti\-'e tay = 0) of an element ol length
ds at (z,7) Is given by gyo dé\where g is the constant accelerntion due to
gravity. Accordingly, p}:re,\tota.l potential energy of the rope in the arbi-
trary gonfiguration y'\y/(x) 1s given by

L E13
5y ) yds=vgj;yv1+y”dx, (38)

! O .
where (1990 (Ze,)2) are the respective fixed end points of the rope
{1 < xa‘%

J‘M':c();djng to the minimum-energy principle the equilibrium configu-
39@113;’1’15 supplied by the particular relation ¥ = y{z) for which (38) s a
Qn?mmum with respect to functions y(z) for which y(x;) = 31, plee) = ¥2

and for which the total arc length '

J = f NI T 7 dn (39)

has th.e prescribed value L. We rnay therefore apply the Fuler-Lagrange
equation (14) of 4-1(b) to the integrand function

*=ogy VI+ ¥ VI F (40;
formed from (38) and (39). Since f* is explicitly independent of the



§4-3 ISOPERIMETRIC PROBLEMS 57

independent variable x, however, we may use 4-2(gii} and so substitute
(40) into {24) of that section:

f2
(egy + ) (—y- 1T+ y”*) = (4,

i
whenee!
) 1 oyl — a)
y = — — = — cogh Z=— :
i p” . 3 7 (41)
where @ is un arbitrary constani of integration. Q)

Thus, according to (41), the shape of a hanging rope is that of aacate-
nary with vertical axis. By specifylng that the catenary pass.\f.ﬁf(}llgh
(y,yy) and (2,32 and that the arc included betwcen these points have
the length I, we may assign values to the constants ', a, hﬁ"h‘ich appear
in (41). The construction is always possible (although{the actual com-
putation of '\, @, » may involve serious numerical diffieulties).

Recanse & rope (or chain) hangs in the shape oy hyperbolic cosine
this curve has been given the name catcna.rx.'\’ {The Latin for chain is

N 'S

catend. ) PAN

4-5. Restrictions Imposed through Ei:gfﬁé or Differential Equations

(2} T'o the problem of 3-8, the ext.fémization of a given integral with
respect to scveral integrand funct-ioris, we add a set of restrictions which
must be satisfied by the fuggtﬁbns eligible for the extremization. Those
restrictions consist of a sé‘t\\&f'ﬁnite or differcntial equations or a combi-
nation of both, with the'total number of equations less than the numboer
of inteprand fllnGt-iQ]:lS: ) Bpecifically, we proceed to derive the system of
differential equatippe which must be satisfied by the sel of [unctions
which extremigé bhie integral

O\
al 4] . . .
AN N iI= A ey, - - - 2%y - 2,0t 42)
wit-h\es‘pect to the & continuously differentiable functions &, %, . . . , #

which achieve preseribed values at £ = & and t = - and which satisfy
the N given (consistent and independent) equations

Colags o 2y A0 =0  (G=12 .. N <k 4

(f a given G; is explicitly indepondent of the derivatives @, %, - - . %
the corresponding equation Gy = 0 is a finite, rather than a differential,
equation.)

1 The details are Joft for the reader; compare 3-7(a).
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As in 3-8(a), we denote the actual extremizing functions by z(f),
y@®, . . ., () and introduce the one-parameter family of comparigon
functions

X@) = 2@) 4+ i), YO = y&) + bald), ,
Z) = z2(8) + es(t), (44)

where £, £, . . . , & are differentiable funetions for which
Et) = &{t) =0 (=12 ...k, _(45)

N\
and which are otherwise arbitrary fo within consistency with the sotof con-
straints—formed by replacing (z,y, . . . ,2) by the comparispnfunctions
(XY, ... ,Z) e (43)— O

GXY, ... XY, . .. ZH=0 (G =‘1?2f,”f‘~. DN (48)

We replace, further, (z,y, . . . ) by (XY, . . ,“2) in the integrand of
{42) and so form the integral O

D
10 = ["/x,Y, .. BEY, ... 2 41

Because of the designation of z(f), y(f); . . . , 2(f) as the actua! extrem-
izing functions, it follows from (44) that I(¢) is an extremum fov e = 0;
that is, N
~ ') =0, (48}
for any permissible choi6® of £, £, . . . , &

Tn the manner of 3-8(a) we form the derivative I’(e) of (47) with the

gid of (44)—from(which we derive (3X/d¢) = £, (8X/d¢) = &, etc.—
to obtain N

I'e) = ‘j\{Ef— N a 1 o i .
(e - 6X£+6‘X€+6Y&+6Y&+

2 &

NN
2N\

A o é‘i']dt
<\,, +az£k+asz

Setting ¢ = O—that is, replacing (X,¥,...,2) by (zy, ... #h
according to (44)—we obtain, with (48),

O R N PN
r'©) f lax£1+aié1+-5§&+-é—££g+---
+ZnrLola-o

We cannot, however, confinue from this point a8 in 3-8(a) because of
he mutual dependence of the functions £, £, ., & as embodied in

(46). To obtain an explicit expression of this dependence we note that

4
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the N equations (46) are satisfied identically! for all ¢, 80 that each may
be differentiated with respect to e as follows:

i K a: k] 7
g—(;;éfx+'3—q$1 G"Ea"r‘a—G—éz ‘+ £+BG:E;¢—'0
(j 1,2, ...,N).

(Here we again make use of (44) to evaluate (9X/d¢), etc.) In particular
for ¢ = 0 we have

aX

oG o a

%&+—QH—@&+Q5+ —r’&+—&—0 "
(G = 1,2, .QO)

gince setting ¢ = 0 means replacing (X,Y, . ,Z) by (:c,y, O ),

aceording to (44).
Multiplying the jth equation of the system (50) by the unspeclﬁed

function w(t), for all j = 1, 2, , N, we add the left}land members
(all equal to zero for any choices of the 1) to the 1ntegra.nd of (49) and
0 obtain K. ,\\

~A¢

N

H[auimeg]ﬁ[af zp,,ax]gl

4]
=L|ga+f m% --+g&+gam
. =0, (51)
where we define '\~
O\ x
\'% F=f+ 2 2 (DG (52}
™3 i=1
Integr ‘biflg\'by parts the second, fourth, . . . , 2kth terms of (51), we

get, with/the aid of (45),
“([aF d foF [aF d(aF)]
ﬁ [[T“m(a—)]” ay daiNag) BT

RESHE PRI

Because of the set (50) of N equations among them, we cannot regard
the k functions £, £, . . . » £ as being free for arbitrary choice. In

1Tt is sufficient that they be satisfied identically in e only for a neighborhood about
e = 0,
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fact there is some subsct of N(< k) of 1hv.rs.c %'1.mvli-m.~' w Fivime ‘.'lHHigllmEIlt
is restricted by the assignment of the remaining (& - N B h'.r the sake
of definiteness we suppose that &1 £ .« - Ex are thie |nnr1@1§ of t-he
set whose dependence upon the choices of ihe EH'fJ.HJ'f.‘!'_.fI,f Sl mlhn‘n (45Y)
Evet, Evis - oo g En IS governed by (50).7 At thix puind we .:x.i«s:g?}.‘the
ynspecified functions u{f), wxlt), - - ax(6) Lo he any = e.ur. \ {utietions
which make vanish (for all ¢ between and {."'_? the vocllicients of §y,
£, . . ., txin the integrand of (53). That 3=, i we let R
denote the first N functions of the list «, %, . . . = ihe E-:uwtluu{u_,—[\i]
are chosen so as to satisfy

N

A

aF  d {aF . o NS .
ot efory =12 ....V.\ (54)
du; (6-11,) 0 G

2
L

With the choice of all the u; so fixed (53) rewds 2y Hillows::

“([ aF df oF o \g
j;l HSMN,H B _(-f_t (6135,\:4.1)] E?H—i + x'\\:

+ [-9!:-\-4\—.{{ (‘”) l t‘ df 0, (6D
FiY it N/ f

where uxys, Uwas, . . ., Wy = & t.‘lemfit:e the final (b -- NV funerions nf tl}e
Hste, g, ...,z Siocethe f&méﬁi’ons Eviry Evin . . oL Epareolo within
{45), corapletely arbitrary, wesmay employ the deviee userd i 5-8(a) to
conclude, on the basis of tﬁ fermma. of 3-1(a), that caeh of {he voefheients
of Exp, Ewgny o v, E;Qﬁ“t ¢ integrand of (35) must vani=h indnidually.
We have, that is,

oF | @[F ”
— A | = ) = N N (')b)
am\'“dc(aﬂ,‘) 0 G=N+1L¥+2.. .
Thus, p{(afrhbining (56) with (54) and noting that wy, wo, . - .l GO
stitute the complete list x, 4, . . . , 2, we reach the conclusion that the
’_"v'. exftemizing functions =(), »(), . . ., 2(0) sutisfy the sysiem of k
\”"L;ﬂler-Lagrange differential equations

QE%Q(@_ Lo OF _dfer
FEERRATTY A T

oF _ d 3_{> ~0, 7
az el \ dz )

1 A]though aotually soroe oiher subset of N functions of the sel & & . - -+ B
way coustitute the dependent set, the above choice of crumeration ean ahways be
achieved by a proper permutation of the letters %, y, . . . , 2. The final reswit is 0
no way dependent upon our specific choiee, , ,

where F is given by (52).
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We must, actually, consider the system of (N 4 k) eguations, con-
sisting of the combination of (43} and (57), as being required for the
determination of the (N + k) unknown functions z, ¥, . .., & &

[T P N R
(B) As a firsi application of the result of (@) above we consider (with

certain obvious changes in notation} the problem presented in exercise
7(a), Chap. 3; that s, we scek the differential cquation satisfied by the
funetion which extremizes

7= jr't flym5,0d8 5

with respeet to twice-differentiable functions () for which y and.} are
preseribed at 7 = 4 and t = . (By ¥ is mecant, of course, the second
derivative of y wilh respect to £} To bring this problcaiﬁwithin the
scope of (@) we rewrite (38) as \\

:2 - - -
1= [ fweiod O (59)

and accordingly affix the condition—\xfhich,]jlﬁi;s the role of (43) with
1'\-r = ]_—— { . N
2 — i =8 (60)
(Thus the second function 2 is pres(}i:i‘b%d att =t and ¢ = i)
In accordance with (52) we employ (59) and (60) to form

o= fppih) + e — 9. (61)
R\
With (61) the system ghdl ferential equations (57) here reads
o7 NG _ of | _ r._z(g) _
D dt 0, mre—ala) ="

E]imirmt-ing&%e" function u between the two cquations and then elimi-
nating z 13;’,{"7110:1.118 of (60), we oblain the gingle differential equation

QO af  d (af) o (af )
- = L =] = 62
ay  di\ay) | di*\o¥ v (62)

which must be satisfied by the function y(¢) which extremizes (58).

(¢) The special case of (a) above in which the equations (43} are all
finite equations is directly applicable to the geodesic problem considered
in 35. The distance bebween two given points in space, as measured
along the smooth ave z = z(8), ¥ = ¥(®), ¢ = 2(t) conmecting them, 13
given by the integral

1= [CVETET A (63)

f1
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where £, and £, are the values of { which respectively designate the given
points, If the are is required to lie in the surface

Glz,y,2) = 0, (64)

we may thus state the general geodesic problem as follows: We seek the
functions which extremize the integral (63) with respect to continuously
differentiable functions x, ¥, z which satisfy (64) and which are preseribed
abt = {1and i =ty

To solve this problem under the jurisdiction of {a) we use (63).and
(84) to form, according to (52), the function

N

¢\
F =&+ ¢+ 2 + uiG(zy,2). o7 (65)
With (65) the Euler-Lagrange equations (57) read “}"}”
06 d i) _ o d v\ _ BN ,a;)_
a0 w5 -alh)=s 3 i(3) =0 o
N
where, for sake of brevity, we write M
) d
= VEFFRF =5 ®7)

[The final form of (67} is emp}g'y;,éd“ in exercise 10 at the end of this
chapter.] The funetion u(f) is eliminated from (66) to give the pair of
equations A\

. §) i(@) d(é)

,’dt(f _dt\f) d\J
NOTTE T T T e (68)

o\ ox dy az

. :"\’.’” . .
whieh, togbther with the equation of the given surface (64}, determine
the equations of the required geodesic arc.

(d) ~$ﬁbﬁcation of (68) to the problem of the geodesic on the sphere
(a@tﬁd by other means in 3-5(c)) involves writing

2yt 42— g2 =0 (69)
for (64); @ is the radius of the given sphere. Thus we have

(9G/02) = %,  (3G/ay) = %,  (9G/az) = 2,
so that equations (68) read, in slightly expanded form,

B _fg—af -4
2ff P T zzzfxzf' (70)
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Equality of the first two members of (70), together with that of the last
two, yields the pair of equations

vE~a _[_ i~y

yE—zj f -y
or, if we ignore the middle member,
d, . . d ., . .
prACCE R G R
yi — g 2 —yi

Integrating, we obtain )

log (y& — zg) = log (ag — y&) + log O, (‘.}:

or AN
vt~z = Cyley — 4): (o

whence

g+ Cé _g

z+Cz ¥y \
A second integration thus yields R O

log (z + C2) =‘logy + log Cs
or ,j:o
& "".6'2'9‘ + Ciz =

~—the equation of a plane hrough the center of the sphere (origin of
coordinates) whose mt.e r\mon with the sphere (69) is the great circle
arrived at in 3-5(c).

Mthough integr; mg the differential equations {68) presents a simple
task in the specialtase (69), the integration problem is in general quite
difficuls, '1he§ma30r advantage of the method of (¢) above is that it
leads quite, directly to an Important theoretical result from the stand-
point of; differential geometry. This result is given explicitly under
exercige J10 at the end of this chapter.

EXERCISES

1. Suppose that, in the solution of a specific isoperimetric problem, computation of
the Lagrange multiplier yields the result A = 0. What is the significance of this
Tesulf ¥

2. (a) Demonstrate the foliowing reciprocity relationship for the simple isaperi-
Metric problem: The particular function which renders { an extremum with respect fo
functions which give J a prescribed value alse rerders J an extremuam with respect to
funetions which give I a prescribed value. (The relationship does not, hewever,
&pply to the apecial circumstance referred to in exercise 1.)
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(b} Use part (a), together with the result of 4-3(a), to estullish the resuit: Of all
Simple closed curves enclosing a given area, the least perimeter is posscssid by the
cirele.

3. (z) Carry out in detail the procedure outlined in 4-2(a} in order 1o uehieve the
regult stated there. Why is it necessary to introduce an (N + Lj-purarmcter family of
comparison functions?

{b) Bring the problems of 4-2{b,r) to a point where the results of 3-10 may be
directly shown to apply as stated.

{c} Carry out the details of the argument regnired to uchieve the stated result of
4-2(d). ~

4, Why do we not apply equation {25) to the problemn of 4-3¢)?  Tixvr: Qdinpare

exercise 10, Chap. 3. ’.\‘\
B. Carry out the integration of the equations (31) hy direet means aMh e nid of
the suggestion given in 4-3{z) directly helow (31). g M

6. Work out the problem of 4-3(b) hy using (24) of 4-2() ratherdfhan (11} of i-1(b).

7. (#) A rope of given length L hangs in equilibrimn hetyput two fixed points
(#1,1) and (29,3.) in such faghion that the distribution of i!-sr,r\z\uss A s waiform with
respect to the horizonial; that is, (dM /dz) = &, a given edustaut, in the eyuitirium
configuration, Show, by means of methods developadhin the foregoing chapter,
that the shape of the hanging rope must bhe parah(}ic. Hixt: A eoertain quick,
thoughiless attack upon the problem yields a circli];x shape; this is of course wrong!
A seeond, swindling approach makes use of equatiel¥' (2.1) of $-2{¢) 1o obtain u paralolie
shape, but this is likewise wrong. A thoughtfil appronch takes into aeeount the
preeise nature of the comparison of the_potential encegy of the rope's equilibrium
configuration with other configurations’eanisistent with the constraints: this leads to

*

the required answer SN\
cl(y\:; C) = talz — Ot @
by Although the IBSHIK&{} 1y is apparently devoid of any dependence npon 2

Lagrange multiplier—sini:e 1, Oy, Oy are introduced directly s integration constants
—show that {

N/ £y = ally + X, (72)

where A is the L{{;r\nge multiplier introduced to fulfll the requirement that the length
of the rape Bethe same in all its comparison configurations. HinT: Prove and use the
fact that (dsjdz) = latz = Co,yp = Cs.

\Vh{a.tfljé]at-ion between € and € replaces (72} if we require that the total mass,
ra;lhen-“ﬁmn the length, of the rope be kept constant and so introduce the nultiplier x'7
ﬁs\h’m: €1 = e 4\,

v {a) Work out the problem of 4-
AnswER! Result (62) unchanged.

(b) Generalize the method

5(b} by rewriting the integrand of (38) s f{1g24,4)

of 4-5(b) 50 s to solve exercise 7(c), Chap, 3. ANSWER:

dir \ay™
where '™ = (doy/di7).

(e} Derive the condition which ms
at which any one of the fynetiong x,
required to have a preseribed value,
ati =t (or £ = 1), we have (aF jaz)

18t be satisficd at an end point I =torf=1t

# - - ., zintroduced at the start of 4-5 is not
Answur: If, for example, #{¢) is not preseribed
=0att = i (ort = tg)



ISOPERIMETRIC PROBLEMS 63

(@) Apply the result of part (¢) to exercisc 7(5), Chap. 3 as an extension of the

method of 4-5H(k1.
9. (a) Derive the differential equation which. must be satisfied by the function

which extremizes the integral
Y
= ]; Fyy'y e

with respect Lo twice-differentiable functions y = y(z) for which .

. e
J = LJ glz,py' ' )de

N
possesses a given preseribed value, and with ¥ and ¥’ both prescribed at z = 2 and
2 AN
T = I \.
(i} Use the method of 4-1 to show, first, that ‘“\
* "’}g
[FGL L in)ar =0 " @
Ay { ¢

where f* = f + »y, and » is arbitrary io within consmtent‘y with the end-point
conditions.
{ii] Cowhine the method of 4-2(d) with that of 4-5(&) %Q\hlev o the required result,
{b) Bhow that leaving y unspecified at either end pom ads to the condition

af _ af *)
74}
-5 ( 54 (74)
at thal crid point,
{¢} Bhow that leaving ¥" unspecified at c.:i'tber encl point leads to the condition
#*

\”aﬂ.;.r.r = (75‘]

at that end point. \ g

[The results (73}, (74}, (75)are required helow in Chap. 10.]
10, Cse the final form, of §67} to show that (68) implies
o djdst _ dyfdst | di/ds
"\‘ aGfox aGtfay a0/ 0z
In the lmguage\f d1i’ferential geometry this result demonstrates that the prineipal
norial to SN pomt of a geodesic arc lins along the normal to the survace G(z,y,2) = 0

at that pqmt
£ &2 1t is required to cxtremize

= f f(x,-y,y’)dm + P}
1
with respect to funetions y{z) and values of the quantity w for which

J = fmy(i,y:.‘l’)d:c + G(w\

has a prescribed value, with y preseribed al @y and zz; F and G are given differentiahle

funetions of w. Show that the required exiremum is achieved if

afr of . R} = 0 76
- m ay) and  F¥(0) =0, (76)
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where f* =f + »g and F* = F + 3G, Hinm: Introduce, in addition to the twe-
parameter family (3) of 4-1(a}, the variable W = w + a1 ~+ esy2, where v and v are
arbitrary constants, and so form I (ey,e:) and J(e,e2).  Ete

(#) Apply part () to the following problem: A perfectly flexible uniferm rope of
fength I, hangs in (unstable} equilibrium, with one end fizxed at (21,1}, 80 that it pagses
over a frictionless pin at (zs,:). It is clear from the first of (76) and 4-4 that the
portion of the rope extended between the two piven points hangs in the form of the
catenary (41), What is the position of the free end of the rope? Awswes:
(&1, —N/eg).

&N\
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CHAPTER 5
GEOMETRICAL OPTICS: FERMAT'S PRINCIPLE

The brachistochrone problem (3-2,6) was first solved by Johann Ber-
noulli through application of the laws of geometrical (or ray) optigss
His methiod of solution has its basis in the principle of Fermat, whish
states that the time elapsed in the passage of light befween two fized potnts is
an extremum with respect o possible paths connecting the 'poz'nz.s.l,\ln this
chapter we accept Fermat's principle as the fundamental ch;a.raéteriza.tion
of geometrical optics and so develop the ideas underlyi%{the Bernoulli
solution.

In what follows we consider only those light Qaths which lie in a
plane—z = 0, for the sake of definifeness. .\".\ ’

\ 3

W

5-1. Law of Refraction (Snell's Law) )

(@) Fermat's principle clearly impliesj{,ﬁhét the light path between two
points in an (optically) homogengoﬁé’ medium is & straight line con-
neeting the points. For since the Vvelocity of light is the same at all
points of such a medium,’ theextrerum (minimum) of time is equiva-
lent to the extremum (mi 'rﬁfurfl) of path length. Thus, in studying the
passage of light betwecphpoints In two contiguous homogeneous media,
we need to consider @§’pssible paths only those which consist of a pair
of connected straight-line segments, with the point of connection at the
common boundafy‘of the media.

We apply Fermat’s principle to the passage of light from the point
(@1,1) in adibmogeneous medium M, to the point (x2,s) in a homogencous
mediumjﬂ'g which is separated from M; by the linet ¥ = ¥ {x, < o).
The &sp‘ective light velocities in the two media ate u; and s (see Tig.
5-1). If we designate the point of intersection of an arbitrary two-seg-
ment path with y = yo as (%,y0), the time of light passage along the path
would be

po Vi — z1)® + o — yl)g+ V(s — 2)* + (Y2 — Yo)®

(21 Y

* In fact the constancy of velocity defines the “optically homogeneous medium.”
1 Actually, a plane separates the two media. Since we confine our sttention ta the
plane z = 0, however, it is more convenient to speak of a line ag separating them.
67
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According to Fermat's principle, therefore, the actual light path is char
acterized by the value of x for which

dT — = xl —_— xz,_—__i;;—_‘ . _ - []
L e R N (T N E RV roumy Vamy (A B

or

sinl ¢ _ sin, $ (1
U Ha

where ¢, is the angle between the normal to the inferface y — ity bl the
path in My, and ¢, is the corresponding angle in M,.  The relafiun (1) is

N

\ M0y
Mo y
o\
& q“{'\Ll 1
| () '»‘3\MN-1 I /4
| ¢‘\"—1
| ~\J/
|¢2 MB £ &/ gl
| R
¢
Y=y ——— 4
’ | ?y My
A [xvyol ':'
| RN ;
1I q :, & % I Mz
E MI A\ g ) + ¢2
RS Y -
(xl’yll \’\" 1
Fra. 5-15 Fra. 5-2.

known as Snell’s Ja% of the refraction of light at the interface of two
homogencous wedia. Txperimentally, it is established beyond all doubt.

{6) We (g;”s}der now a set of N contiguous parallel-faced homogeneous
media My Wy, . . . | My (in order of position), where the interfaces are
lines qf,jqbnsta,nt ¥ (see Fig. 5-2); the light velocity in M, is denoted by
wAS 12, ... N). Since the interfaces are parallel, the angle ¢
which & given light ray makes with the normal to one houndary of M,
is equal to the angle it makes with the normal to the opposite boundary
of M, =12 ... ). Thus the Snell’s-law relation (1) may be
applied to the successive interfaces as follows:

SIn ér _ sin gy sin ¢y
Uy o - Uy !
or
sin ¢y

n —K O U=1200m, @)
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where K is a constant for any given light path. (The value of K is
determined by the orientation of the path segment within any one of
the M, —within M., for example.)

(¢) Next we consider a single optically inhomogeneous medium M in
which the light velocity is a single-valued continuous function of the y
coordinate; i.e., we have

1 = nu{y).

{The medium is assumed optically isotropic: The velocity at any point is
independent of the direction of the light path through the point.) \T'6
arrive at the law which describes the configuration of a light I;Bj\con—
necting any two points of such a4 medium, we first approumate\ﬂf by a
sequence of parallel-faced homogeneous media My, M, .. X \My having
the character of the arrangement described in (D) aborve *The light
velocity w; within Af; is chosen to be egual to u(y) e&?ﬁl‘uated at some
point between the (y = constant) lines which bound 11'

The light path through the sequence of subandmg media is a polyg-
onal line, the orientation of each of whose segmlents is described by the
extended form of 8nell’s law (2). The smallervthe width of the individual
subdivisions and the larger their numbgx N, the closer is the approxi-
mating arrangement to the actual medi,um M and, thercefore, the closer
an approximation is a given polygomal light path fhrough My, My ..,
Mx to an actual lght path through M. As we improve the degree of
approximation indefinitely b kttmg N increase without limit and hav-
ing the width of each &.ub(g&\rsmn approach zcro, the relation (2) applies
at every stage of the prore In the limit in which the approximation is
perfeet, (2) ) deseribesq thy direction, at any point, of the tangent line to
an aetual light patQ n M. We therefore rewrite (2} as

'® X
Q MWK, ®)

?
S

whored; 411(1 # are continuous functions of ¥.
If Q\:: y(x) is the equation of & light path in M, we have (see Fig. 5-3)
that y'(x) = cot ¢, so that
L ()
Vi+y®

Thus, for & medium whose optical propertics are described by the given
velocity function w(y), (3) reads, with the aid of (4), :

sin ¢ = ————=

1 -
_ =K (3)
” ,\/1 + y!2
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g first-order differential equation whose solution is directly found to be
_udy (6)
/1 — K?

The constant K and the constant of integration are fixed by specifying
two points through which the light path is required to puss, provided
such a path actually exisis.

¥

z=+K

: .\s'j}\ Fio. 5-3.
§-2. Fermat's Principle and the Calculus of Variations

In this sectioh(we traverse a second path of reasoning to achieve the
results (5) andA6) for a light path within a medium in which the light
velocity, ¥8rtés continuously as & function of one cartesian coordinate.
Here we.express Fermat's principle directly as applied to an inhomo-
genebus medium : I the velocity of light is given by the continuous fune-

»iibﬁ’ % = u(y), the actual light path connecting the points (z,y1) and
(#2,y3) is one which extremizes the time integral

{xry9) *1 T L I8

I= f & _ ["V1ty ()

(g W P U

(This statement of the principle is correct even if u = u{z,y).)
According to 3-3 we thus have that y = y(x)—the equation of the

actual light path-—must satisfy the Fuler-Lagrange equation (25) of that
section, with
f= \/i“'—_"+ ym:

8)
u(y) (
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the integrand of (7). BSince f is explicitly independent of z, however, we
may employ directly the first integral (28) of 3-4(b)—namely,

.8
2 s, o
With (8), equation (9) reads
yr'.z B vr"“—l T yfz _ Cl
w1y U !
or Q"
1 A\
—em—— e = —C - '\,. 10
w14 y? ' 2N\ f )

Clearly, (10 is identical with the result (5), dertved on the 'balafs of Snell’s
law, with the constant € identified with —K. Thuy @) also leads
directly to {(6), with the same identification of constahts:

We have in (), therefore, the solution of a problem in the ealculus of
vatistions—the problem of finding the function/for which the integral
(7) is an extremum—obtained by methods, dther than those which are
peculiar to the calculus of variations. The fethods employed to achieve
this solution are those of geometricalcdptics, together with a limiting
process following upon the approximaﬁén of an opiically inhomogeneous
medium by a sequence of homogeneous media.

If, for example, we choose tl{a"velocity function to be

£ ) [
“Q‘j"= V290 — yo)s
where , and g(> 0) are. given constants, the time integral (7) becomes
identical with the imbégral (16) of 3-2(c), whose extremization results in
the solution of thébrachistochrone problem. Through the procedure of
5-1, theTEfore,,‘tile’soiution of the brachistochrone problem is effected by
means of geometrical optics. In essence, this is the method employed
by Johami"Bérnoulli to solve his brachistochrone problem at the end of
the Bf'i;énteenth century.

EXERCISES

1. (¢) Write down the integral which must be extremized, sccording to Fermat's
prineiple, if the light paths are not restricted to plane eurves, and with » = u{z,,2).
Let = be the independent variable.

(b} Write down the pair of Euler-Lagrange equations (again with z as independent
variable) which describe light paths in three dimensions if u = ul(z,2) _

_ 2, Describe the planc paths of light in the (two-dimensional) media in which the
light velocities are given respectively by (i) u = ay; @) (8/9)i Gii) ayt; Gv) oy~ h;
where o > 0,y > 0.



CHAPTER 6
DYNAMICS OF PARTICLES

The material of the cnsuing chapter is based upon an assumed kqul—
edge of only the most elementary concepts of particle dynamies. \\Nide-
quate comprehension of the subject matter should  therefuf Wequire
negligible background in physics. On the other hund this @hipter can-
not be considered as a svitable introduction to an int(w'jp'i‘\'o sludy of
particle dynamics. It is meant, rather, to provide u,;ﬂ'i.ml;sv of the role
played by the calculus of variations in a small scgrmﬁ}l\ of dynmies and
to serve as a springboard for several of the problow considered in chap-
ters following, The discussion is conhned tQ’x\flrclutivislin-, or Helassi-
cal,” phenomena, NV

S J
NN

6-1. Potential and Kinetic Energies, \ Generalized Coordinates

(@) We consider a system of ps particles subject to given geometric
constraints and otherwise influgneed by forces which are funetions only
of the positions of the partieles. (The geometric constraints, which do
f0b vary in fime, may corgm}t, for example, of the confinement of certain
of the particles to givefi eGrves or surfaces, or of the constancy of the
distance .separating gertain pairs of the particles, ete.) Specifically, the
farce acting upon(the’ jth particle (at x;,y;,2) of the system (apart from
the forces of.tomstraint) has the cartesian components £7', ¥oF 9
(7 = 1,2, . &\%p), which are funetions of the 3p position coordinates
£y, Y1, z;(\\." oy Lz, ¥p 2p of the particles of the sysfem.

In allibut the fnal section of this chapter we confine consideration t0
th{@f’?‘!f’ial type of foree sysfem—*“conservative’’ svsiem—-for which there
exighs & single function V = V{zy,y,z2, ,
may derive the 3p force components as
D = B_Tf 1 4 s av
F3 axs_’ FE} - T é‘g{’ Fo = — —551 (=12 ... }p)'

. Eplpp) from swhich we

The function V is called the pofential energy of the system; we do not
Ct)anefrn ourselves lhere with questions of its existence or determination in
specific physieal situations: For purposes of this chapter the statement of

. .
In particular the torms mass and force are employed hare without definition.
72
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a conservative-dynamies prohlem involves three given elements: (i) the
number and respeclive masses of the particles, (ii) the geometric con-
straints upon the particles, and (iif) the potential-energy funetion V.

- () The kinctic eneryy of a particle is defined as the quantity

I (ds/di)? = jm{@ + g + 59,

where s is the mass of the particle and! (ds/dt)? = (#* + ¢* + %) is the
square of the velocity of the partide.  For a system of p particles the
kinetic encryy is defined us the sum ~
A N
T= g ) m o ), Oa
i=1 \
where m; 1s he mass of the jth particle. Since the mass i§'fever nega-
tive, we have the inequality T 2 0, with equality h»c‘)@iiig only if the
gystern is al rest. \J
(z) The effect of constraints upon a system of particles is to reduce
the number of independent coordinates descrififig the positions of the
particles. 11 the constraints are cumpletcly{%eciﬁed by the k (< 3p)
consistent and independent equations \

o\

ity - o Eabeee) =0 =12k, 3)

the numhber of independent coorditiite variables is (3p — k); the equa-
tions (3) may be used, at leasf\"}ﬁ principle, to eliminate the remaining &
variables from the problem, ()

It is more con\renicnt,\hbwever, to introduce s et of (3p — k) =N
independent \-'ari:-l.bles.q;,’gg, .. ., gx through which the positions of all
p particles are deseribéd. Thus the equations of constraint (3) are in
effect replaced hyf Zhe equivalent system of 3p equations

Ty = $;'(gl, ',%&;"g’ﬁ)} Wi = y.f(qh - ,Q_'N), gy = z:'(Qh oo ,QN), (4)

for j = ,l,;Ti?-’; ..., p. The variables qi, g2, . . ., 4¥ 818 known as
genendlived coordinates; specification of their respective values esfab-
ﬁshet}tﬁmugh (4), the positions of the p particles—and always con-
sistently with the geometric constraints imposed upon them.

The choice of a set of generalized coordinates for the deseription of the
Positions of a particular system of particles subject to given constraints is
not unique; but the number of such coordinates which must be employed
is perfectly definite: It is the smallest number of variables required to
describe completely the position configuration of the system when the
constraints are known. For example, a particle confined to a given sur-

! Throughout this chapter, and freguently in chapters following, we employ the
superior dot 4o indicate differentiztion with respeet to the time variable £.
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That is, the motion of & conservutive system is eharaeterized by the eon-
ataney of the sum of the potential and kinetie energies (whenee the appel-
lation conservative). The constant E, the folal encnjy ol the system, i
determived when the initial values of all the g; nud g, e assigned,

6-3. Generalized Momenta. Hamilten Equations of Metion

(@) Dealing with a system whose position vouligurition s completely

deseribed by the generalized coordinates ¢ gu oo oy and whos

legrangian is L, we define the set 21, po - . . . Py ul oo reedized wibpenta
as O\

aT . e\ N .

i = t= 12, ... N « N 1

p=gy b=z AR (1)

Since, according to 6-1(d), the kinetic energy 7 i;‘-‘in&’{'{lltlf}l'lltiC form in
the generalized velocity components g, it fullowgdyom the definition (1)
that each p: is a linear homogeneous functio ol g2 . . . .y Co-
versely, solution of the N equations (11) 1{1@. yield each of the giasa
lingar homogeneous function! of py, pe, \S

: R { R
(b) Using the equations {11} to elimdifiate ¢, Gu . - . . ¥ from the
lagranginn L—which is thus expresged solely as a function of go ga - -

Gx, Py Py - . ., Dy—we define :t’hé;hamﬁ-ifmr'fm H oof the system through
the identity N

P4\

N il
H{qy,99, ., o 0%, D1, b2, e N {12}
AW - ,Px) = it oy .
N\ \\ :'{-’-t(l

where the appegririce of each ¢; in the right-hand member represents

t"r}e solution ‘{f {(i1) for this quantity in terms of the generalized moments.
Smcu:'a (12}\18 an identity in the p; and ¢ (via (11}), we may form the
p&l’tlals'{ierllv&tive with respect to p/—~whereby all the p, with i #
tOfg\?fl'l’er with all the ¢;, are held constaut——ami g0 ohtaln .

\ 2 A\'_ \.\-'
N R AL
Py L ap; 8d: ap;

= =1

¥ i=
= ¢ 99 oTy _ | _ )
QJ+20%—(T}‘ - é“g?) =4 G=12.. .0 @3
=1

! Thiz follows divoe ' L 1y
cily - i} 'y . . - . ;
Tnesns of detemﬁna.nts,y from Cramer's rule for the. solution- of Hnear vquations P¥

in (11 does not vargsh, pr(\)\flded the determinant of the coefficients of 41, Fs -+ - o
15 & conseqnence of 1 - We accept ‘here the nonvanishing of this determinunt. which
) 16 positive definite characior of 7 as a quadratic form iu the -
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gince {8L/8¢;) = (9 T/a8¢;) for all ¢, and because of the definition (11} of
pi. The N equations (13) clearly represent the explicit solution of the
get (1) for eueh g, In ferms of the p;.

Qubstituting (i1) into (12) and making use of the resuit

N

- . aT

2(1" = P

2 * o

iml
arrived at in G-2{¢), we have
N\
N
— aT ' —_ . a1 '\:

I = 20@'«' G~L=2T—(T—V)=T+T7, & 114)

e=1
-
<

with the aid of the definition (6) of L. That is, the apiiltonian of s
system is the sum of the potential energy and the kiietie energy, when
the latter quantity is expressed in terms of the ¢; ahdthe p;, rather than
in terms of the g 'Thus the most convenient/nsthod of forming the
hamiltonian of a given system is the followidg® (i) We write down the
potential encrgy in terms of the ¢;, the kingtic energy in terms of the
g and ¢ (i) form and solve the N equetions (11)—since the explieit
solution (13) is not available prior to3ﬁmation of the hamiltonian t—for
the ¢; {iii) substitute for the ¢ mT wnd so obtain # = 7' 4+ T in terms
of gu, g5, . . ., gx, P, Py - - ENDE

(¢) In terms of the hamijltdnien the integral (7) of 6-2(a) whose extrem-
ization leads, according %o" Hamilton’s principle, to the equations of

motion of 1 mechanicalgystem is given by
A&/

D b
\\\ I = L‘ (Zl pads — H) dt, (15)

ot Slll)\st-'r&'lt:-ifon for L through (12). The extremization must be effected
wit}r\{c%}iect {0 the 2N continuously differentiable functions ¢, s, . .« -

&

x, 1, D2, . . . , Py, among which there obtains the set of N relations
G — 3*;1 —0  G=12 ..M (16)

uecording to (13).

To derive the sot of differential equations called for by the exiremi-
zation, we employ the method of 4-6(a). With (15) and (18) respectively
representing specific cases of (42) and (43) of the earlier section we form
the function—(52) of 4-5{a)—-
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- . oH
F= 2 pigi — H + E #ill) (Q:‘ — 6_1).)’ {n

ge=1 fm]

where g1, p2, . . ., pv are undetermined functions. Substituting 1m
into (57) of 4-5(a), with appropriate changes of notation, we obtain, since
(8F/ap;) = O {identically) for all 7,

N
aH azH . N\
i o — — () ——— =0 =1,2,...,N) 18
=G~ ), ) g ( 7o
=1 (W
and O
\ H o d
oH d . a3
— = Y k) e — 2 (py ) = =12 M.
P ulf) 305 @i i +m)=0 (5 w{,\, N). (19)
o=l 3
Because of (16) the N equations (18) read, \J
g
. —— T 3 == m
Eu,(t) ey 0 ”}“(} 1,2, ... ,N), (20)
=t _
for which an obvious solution®48%; = 0 for all { = 1,2, ...,N Su

stituting this result into (19)we obtain Ps = —(8H/8q;) for all j. This
set of equations, taken i tonjunction with the relations (16), supplies the
system of 2N equationg~the Hamilton equations of motion—

. ".."aH . aH
7R aqa = - p = 2t
?’f\;-ﬁf“' 3 “= o (t=12 ... ,N). (21)

o
The system-(21) constitutes 2 first-order ordinary differential equations.
Theu.@i}ef&l solution is accomplished in the attainment of 2N finite equa-
tlong which relate g, ¢, . . . » 9%, Py Py . . ., py and the time varna-

\Bg‘% t, and which involve 2N arbitrary constants of integration. These
e

nstants become determinate when initial (¢ = 0, for example) values

- » @v and to p,, Py, . .., py—or, equivalentle
b0 g, L Thus, through (21}, knowledge of
the'motmn of a mechanical system is completely determined if the hamil-
tonian function # i known, along with the initial state of the gystemn.

! That this solution is ung e follow . o of
g s from i inan
the coeficients of the . the nonvanishing of the determ

¢in (20). We accept here the nonvanishing of this determinant
—a dj b g of this dete: -
4. direet consequenee qf the positive definite chazacter of T as a quadratic form i
Pu Dy - . ., py {see footnote 1, p. 76 and also end-chapter exercise 8).

are assigned to &, 9 .
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Application of the Hamilton equations (21) to specific problems is left
for the end-chapter exercises.

g-4. Canonical Transformations

(a) We consider a mechanical system whose hamiltonian function
Higngs - - - @Py,P2, - - - ,bn) 18 known and propese a change of
variables which has the following character:

(i) By means of 2N finite equations we define a system of 2N new
variables @1, Qs, . . . , Qn, P1, Py, . . . , Py as functions of the original
set of variables gy, ¢s, . - ., Oy, Py, P2, - - . , Py The possibility thad N
the time variable ¢ may appear explicitly in the equations of transfortaa-
tion is admitted. A\

(if) There is no funciional relationship among the variables g, bop s o -
gx. @, Q=, . . . , Qx which is completely independent of all the pi and P;.

(iii) The equations of motion, written in terms of th&iqéw variables,
must possess the same form as the Hamilton equations {21) in the sense
that there exists a function K = K(Q1,Qs, - . .:ﬂ@\;;Pl,Pg, R S 4]
such that the transformed equations of motion réad

) ¢ 3

Pi= — -g—f} ¢ = % G M. ©@2)

That a {ransformation which satisﬁéis (i) and (iii) is always possible
should be obvious if we fake into account the Hamilton’s-principle deri-
vation of (21) in 6-3(c) and the.fesult of 3-4(c) which allows the addition
to an integrand of an ‘e ziqtfderivative” without alteration of the
resulting Euler-Lagrange gquation.” Thus if we effect a transformation

through the identities ;"

A\

L N ,t\."

G _:§:‘ . a8 . 0K
2?0:% H i. v P — K+ ‘EE} Q= P,
2= oy Vit .

\ (1' = 1;2: - !N)! (23)

where $.i& any continuously differentiable function of ¢, ¢1, . . . » 9%
@, Qs . . ., Qy, i, we should expect Hamilton’s prineiple to lead directly

to (22). (The explicit equations of transformation are derived from (28)
m (5) below.)

‘TO prove this assertion we use the first of (23)—with q1, @5, . . ., @
eliminated from 8 in terms of Qi Qo . o o, Qv P, Py - oo, Pr, t—
to substitute for the integrand of (15). We proceed to extremize / with

. The result of 3-4(c) must be extended $o apply to the present case. The extension
18 implicit in the derivation below of (22). We merely use 3-4(c) here asa guide.



80. CALCULUS OF VARIATIONS (464

respect to the new variables P, Q which are linked by the second of
(23) (N eguations). Following the procedure of 6-3(e), we veplace (17),
according to (23}, by
N AM
) . d8 : i
F= ZP‘;Q{ ~ K+t Z uy (1) (Qv’ - ,,p‘)' (24)
i=1 Cooasd

Substituting (24) into (57) of 4-5(a), with appropriafe chanessof nota-
fion, we obtain

¥ &)
. oK ¢ fd S @K dfa fdSY IO T
@ - 5}7;"'@}(@ B Z“‘ 8P; 0P; — dl| ap, \ diyl
t=1 i ,".\ 4 . A
Genz, ... Y (29)
and
K | 8 {dS SN @K d ji\ 3 [dS '
d o\ t i
— = S22y — AL - VR plai T
50, a@;(dt) E“‘ aQ; ap; ﬂ o am(“) l
- o) W (J=12 ...,V (20
Since & is supposed expressediﬁ‘éérms of @y, s, . .., Q5,0 e s
Py, t, i (24), (25), and (26)3%e have
&
s O as 88 . 88 o7
’§\_§+ _(a-@Qt-[-mPa)r @n
O i=1
0 that \,
"\ y p
ayé (AT _dfasy _ 8 i TP .
di | gpoNdt )| dt\aP;) — at aF, aQ; 8P, ¢ U aP; 0Py
3\)\ i=1
s:‘,"‘ N
~NO s Tas a8 - S 8 (dSY (28)
\% =@?[E+E(6@Q‘+5R—Piﬂ=m(‘ffz‘)' (
=]
Because of (28) and the second of (23) the systom (25) reads
N .
02K
. = C 20
Zlm B0, =0 =12....M (29)

for which the solution ist w; = 0, for all ¢ = 1,2, ..., N. Yurther, it

{ Bee end-chapter exercige 8.
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fnllo“c hnm (uﬂ in the manner of achieving (28), that! .

0 dS\ A 8 Jdf P
aQ}-( ) i [G—QJ(;D] N )

so that, with the vanishing of all the g, (26} reduces to

—(aK/0Q) =P, (=12, ... ,N).
We therefore have, with the second of (23), the required set (22) of the
fransfor med Tlelltc)l:a equations of motion. N\

{0) The result of {¢) above demonstrates that any change of variahbles
of the type (i) for which the identities (23) bold necessarily satisfies the
requirement. (1i).  We proceed to derive from the first of,(?g), with
application of the restrietion (ii}, the actual equations of tra:nsiiormatlon

Multiplyimg the first of (23) by dt and expanding tl\ Wilferential of

8= 8y .. e, QB .. ,@QR,E), wo get

X N )

Z;u,:dq; --Hdt = E PedQ; — K dt + a—sd‘i—\i( Sd i 4 ;g Q)
i=1 =1 i=1

or .‘.’jz"

=R

N

X N
asy 48N as
Z (??s - :;) dg - Z (P + Q ) a0, + ( - H - -) dt=10. (31
i =1

=

,‘

Since the first of (23_)—a11\d therefore also (31)—is an identity in the
variables involved, andMsecause of the requirement (i) of (e) above

(whereby the dg,, d{}g;~\. .., dgx, @4, 4@y, . . ., d@x may be assigned
arbitrary valucs).i¥e’ conchude from (31) that

\..
. LN ‘
i) K=H+.%§, (i) p£=g—f_; (iti) Pi= — 35 (=12 ...,N). (32)
'¢\’¢ T T

Thds\ﬁ S s any continously differentiable function of the g;, the &
&_lld t, (32) generates o transformation—a so-called canondeal transforma-
tion- —of th( character (,all( wd for at the opening of {a) above The 2N

and the old (Q't pJ varlablos \wth { playymg thc role of parametm in the
llansfoxmdhon (32,1) provides the function K, which plays the role of
hamiltonian in the transformed coquations of motion (22) and which, for
sake of brevity, we call the kamiftonian.

! Bee end-chapter exercise 7.
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- We may therefore choose at random any suitable function S and so
generate a canonical transformation (see end-chapter exercise 6). Tt is
of course hoped, in the execution of any such transformation, ihat it leads
to a set of equations of motion (22) whose integration is less difficult than
that of the original set (21). In the section following we consider g
method for choosing the function § so that the integration of (22) may
be accomplished with maximum simplicity.
6-5. The Hamilton-Jacobi Differential Equation \

N
g N

(@) The most easily integrated set of transformed equatimﬂi 0f motion
(22} is arrived at by a canonical transformation whicl}‘}pﬁils 1o a kamil-
tonian K which is identically zero. TFor, in such an event, (22) reads
Pi= ;= 0forall ¢, 50 that the solutions are signél,jr

Pl' = .SI'J Qi = 0 (1: = 112,&\3‘ L ,N»),

where the 3; and g; are two sets of arbitraf:}t‘:onstants‘ With these solu-

tions obtained we may then solve the fransformation equations (32,1,iii)
and so obtain the p; and ¢;, for all 4, Asfunctions of £ and the 2 arbitrary
constants 8y, 8y, . . . , By, €1, G20Y . . , ax.

For a canonical transformation to lead to a kamiltonian K identically
zero, it follows from (32,i) that the funetion 8 which generates the trans-

formation must be such;tl;\a.t H+ (a8/0t) = 0. Orif
N

H“E. (91,92: P ,Q‘N,pl,Pzg L !pN)

: . K\
is the ha‘mﬂt‘{‘lan of the system under study, we therefore have from
(32,i1) that-SGhust satisfy the partial differential equation

O

) a8 a8 as a8
NN H( L —_—rm ., . —_ —_— 33
N N @1,¢a f]’.v,aql 6(}2’ * ' 3gw + 3 0 (33)

““the so-called Hamilton-Jacobi equation.

. The equation (33) has an infinity of solutions, of which our interest
heslsolely in the complete solutions—those which involve N independent
arbitrary constants ), o, . . . » oy, aside from the one additive con-
stant of integration. (It is clear that (S + C) is a solution of (33)if

S is a solution, where ¢ is any constant; this constant € is not included
among the ¥ constants of 3 complete solution.)

We suppose that S = S(gi,qe, . . . Amanas, . . . oy t) is a come
p}ete solution of the Hamilton-Jacobi equation (33). Since the o
G=12 ... N) are constants only in so far as they are independ-
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ent of g, ¢z . . ., qv, I, we may effect the identification a; = ;
{=12, ... ,N)and so obtain
8 = S(qlsqﬂs CETS ,QW,QI,Q?, e sQN:t) (34)

as the function which generates, through (32), a canonical transforma-
tion. But since (34) satisfies (33), we have, as planned, that K = 0, by
(32,0), so that (22) yields the results P; = 8, Q; = a;, for each ¢, as
required. To obtain the original variables g1, ¢z, . . . , qw, 21, Ps, . . . .
py a8 functions of { and the 2V arbitrary constants, we employ (as stated\
in the opening paragraph of this section) the transformation equatiohs
Since, however, the a; as well as the «;, constitute a set of &)inde-
pendent arbitrary constants, we may make the identiﬁcatjoﬁ' 0 = o
(t=12, ... ,N), bypass the substitution e; = Q; in the' complete
solution S = S(gu,gs, . . . ,qwemes . . . ,axt) of (3Ppsand directly

1 o ’::\ o
s R S ) (35)

Pa:a—q"‘} ﬁs——ggi

Q"

where a1, as, . . . , aw are the independesit constants of the complete
solution of (33), and By, B3, - . . , B ~a’re';’al second set of arbitrary con-
stants substituted for Ps, Ps, . . . B in (32iil). The solution of the
2N findte equations (35) for the q: gnd p; (i = 1,2, . . . ,N) constitutes the
general solution of the original Hamilton equations of motion (21). Thus
the solution of the 2§ ordi@i&y"diﬁcrential equations (21} is reduced to
the achievement of a combplete solution of the single partial differential
equation (33). <
(b) By writing \
PR e P

\’\\ } §=8 Et, (36)
where §* is.jiﬁdependent of ¢t and E is an arbitrary constunt, we see
that § is.« ;éolution of (33) if S* satisfies the time-independent reduced
HamiltonJacobi equation

&y

a8* 98> aS*) 37

H(QI,Q‘Q, - ,qN,—é-é—;,-é-é;, . ’aq—N

Since, according to (14) of 6-3(b), H = T + V, and (T + V) is a con-
stant—the total energy—during the motion of a given ecnservative sys-
tem, according to 6-2(c), the arbitrary constant E in (36) and (37) must
be identified with the total energy of the system whose hamiltonian is H.
{8ince the total energy of a system is determined only when the 2N con-
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stants of infegration of the equations of motion are ussigned definits
values, F maintains its character as an arbitrary constant.)

To obtain a complete solution of the Humilton-Jacohi tiuation (33
one usually first determines a complete solution of the redneed equation
(37), after which (38} is employed as the solution of (33). A complete
golution of (37) involves (N — 1) arbitrary constants oy, w., . . | , @y,
as well as £ (aside from the trivial additive constant).  Thus, with B
properly regarded as an arbitrary constant—ecqual to e, say -the solu-
tion of (33) given by (38) is the required complete solution. O

{¢} In the case of a single particle of mass m moving under I.i\m\inﬂucnce
of a conservative force, but completely frec of geometric Gelsiraints, we
may use the cartesian coordinates as the generalized ¥oordinates—
narely, ¢; =z, g2 = y, gz = 2. Thus, according to. %23 o1 4-1(D), the
kinetic energy is given by 7' = 4m(d? + 92 + 2. &4m(y 1 # + ia).
From the definition (11) of 6-3(a) we have vlheNgeneralized momenta
Pr=mds, Pz = ms, ps = My, so that S (1/2m)(p° + pi + pd.
From (14) of 6-3(h), therefore, the hami@miun of the single-particle
system is H = (1/2m)(p} + p; + p3) &z, p.2), whore 17 s the poten-
tial energy of the particle. Accordingly, the reduced Tlumilton-Jacobi
equation (37} reads, in this impnrj:aﬁ't“special ease,

L[ fas*\*  [a8% NN ) N
Q-?}_E. [( 6:1-.) + (a;;) + ( 8z ) } + 14 (;I',?],Z) = -;L'_v (38)

. i‘\
since 1 = x, g, = y, gk,

(d) To illustratesth® use of the Hamilton-Jacobi methad of deter-
mining the motiowy0fa system we consider the special case of the uncon-
strained single p:@ﬁ-iele in which V" depends only on z—namely, 7 = Flz).
In accordargcg';\}ith a general mode of procedure we seck a solution of (38)
of the f01:§~ 4

K\ C8* = X@) + Y + 2(), (39)
whqh;ée'(SS), with ¥V = V(z), becomes
4

XN | {dYN | fdz\ _ _
E‘E) + (ay—) + (-uf_z-) = 2m{lf — V{(2)].

An obvious complete solution is achieved by letting each of the first two
terms equal arbitrary constants, so that

.;\’ = \/i‘?ﬁx} }’ = .\/-2??1-?}} A \;/5?};’ [[as o i'(ZJ]idzg (40)

W%ICI‘B @y is written for (B — of — ol). With (39) and (40, ['Ugct'her
with (36), we therefore have |
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§=/2m (o + aw + f[aa — V(@ de} — (as + o? + ad)t,

whenee the solutions {35) of the equations of motion read (smce g1 = a,
G = ¢ =2 Pr= \2may, pp = \/Qmaz, ps = \/ 2m{as — V), and

Bi=2mz — 2ad, By = Vomy — 2eeod,

VEm d
Ba = —z+/ S s V(:)]% (41)

The more important trio of equations (41) may be solved for z, y, and <>
apon performance of the integration when V(z) is given exphf'ltly;m
terms of ¢ and the six arbitrary constants oy, 8

Additional ciscussion of the Hamilton-Jacobi method, 1n('1udfr1g fur-
ther treatment of the foregoing problem in exercise 10, is Icserved for the
end-chapter excreises. RS

6-6. Principle of Least Action O

{e) We denote by the symbol € the configura '611\—1'.6., the aggregate
of the positions of the individual particles e\hilﬁ jed by a given system
of particles ul an inatant { = f; O dcuotoa the configuration at a later
instant { = 4. The aggregate of all thes paths traversed by the indi-
vidual particles when the system pursues its course from the configu-
ration € to the conliguration € e wedll the configuration path, or erbit,
of the system from €', to ;. The'attual, or dynamical, orbit of a system
between two given configurations clearly depends upon the geometric
constraints {raposed upon Lh}\\system and the forces which influence the
motion.  Ti is usefl ul, alsoldo speak of possible orbits between two given
configurations: these aré éonfiguration paths which are merely geometri-
catly, while not nece\arlly dynamically, feasible within the limitations
of the (,omtmlm\ For example, we consider a single particle which is
tonstrained to lje In a fixed plane; it moves, under the influence of a given
force, along, @ ecrtain are connecting the points 7y and Py in this plane.
Its artuK qunf belween Py and Py is that are; but any (smooth) curve
which liesn the fixed plane and which connects P, and P, is considered a
possible arbit between these points.

We consider u given conservative system whose kinetic energy js

T(QhQE; R ST TR ,Q"N);

whose potential energy is V{(¢1,qz, . . - ,0x), and which pursues its
dynamical orbit 04 from configuration Cy to configuration Cs with the
tonstant valuet E of the tota) energy (T + V). We next conceive of

T Bee 6-2¢).
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the system ag pursuing an arbitrary possible orbit (4, from € to €y in
the following manner:

(i) The system starts from C; at the same instant ¢ = {, at which the
actual motion starts from Ci.

(if) The motion along O, is characterized by the same constant value
E of the total energy (T + V) as that which characterizes the actual
motion along Os. (In general, the instant of arrival at ('; Is not the
same ¢ = I, at which the pursuit of Oq is completed at {’2)

We evaluate the so-called action integral ~

v=2 ["Ta RS S
"N
for the actual motion from C; to €, along Oy, and for {he raotions—as
deseribed by () and (ii)—along all possible orbits/Qy which connect C
and Ca, where #; represents the time of arrival ap.(f’ o (differcnt, in general,
for each choice of 0,) for each individual adtion. In (b} below we
demonstrate the validity of the principle ofleast action:

The actual motion from Cy to Cy is chakdelerized by an exiremum of the
action (42) with respect o possible mofians from Cy to C, for which the total
energy ts constant and equal lo the gatual {otal energy E.

(b) To prove the validity of theeast-action principle, we show that it
leads to a set of equations ideltical with Lagrange’s equations of motion
(8) of 6-2(b). S

Since the upper limit4,\s not prescribed for the extremization of (42),
the proof is grea% simplified through introduction of a parameter
u = u(t), which plays the role of independent vartable in (42). This
parameter Inus\tbe chosen differently for each possible orbit, but in such
fashion that(i = u(f)) and uz = u(ls) have the same pair of values for
every possible orbit. Thus the extremization of (42) is reduced, sinee
df = ﬁ@/’i&}, to the extremization of

O I*=2fm:rﬁﬁ, (43)
S 3 1 u

in which both u, and v, have fized values.
‘ To complete the elimination of the variable £ we write, for each ¢ = 1,
2, .. N, g = (dgi/dudi = ¢t = glw, where the prime indicates dif-

ferentiation with respect to u, and w = w(x) = % ig introduced for sake
of convenience. Thus we have

T = T(q}-) e .)Q‘qu;.wy ‘e ,q;qw) = ‘w“T(ql, e ,Q‘N,Q‘;: P ,Q;f)r (4'4)

since 7' is a homogeneous function, of degree two, in g, G2, - - - » g

according to 6-1(d). Writing 7% = T(q,, . . . quq,, . . . ,dx) W€ U¥
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(44) to express (43) as
* =2 ["wr du. (5)

Tinally, we may rewrite the constancy-of-energy condition T' + V = Eas
wT* + 7V = E. {46)

With the transformations of the preceding paragraph we may restate
the principle of least action briefly as follows: The actual orbit is charae-
terized by an extremum of (45) with respect to the functions g:(u}, go(u), |

., gwlu), w(u) which satisfy the auxiliary condition (46), and for
which ¢, g2, . . . , Qw 8L€ prescribed at © = u; and u = U O\

We proceed to effect the extremization indicated using the method of
1-5(a). With (45) and (46} respectively representing speciﬁg,gajées of
(42) and (43) of 4-5(a) we form fhe function [(52) of 4-5(@)lmN

"

F o ol + a7 — B0

where p is an undetermined function. Substituting{47) into (57) of
1-5{a), with appropriate change of notation, we obtair, since (8F /ow’) = 0
(identically), AWV

(47)

T 4 fuwT* =8 (48)
and, since (3V/3¢) = 0 (identically) forall 4,

a1 are oV o, aT*]
g -t Y = 2
2w o +n(w 30 + ag‘) ,ifd}\;[@w'}_”w) 7
a\ G=12 ...,N). (49)

N\

From (44) it follows,, éiz;ée w = u, that

or* _JDelwrry _ 10T _ oT 8¢; _ 1 aT
‘a_q:T.\Y.wﬁ g wiag, wrdgidg w0

and w?(aT%fé'i{;’) = (8T/ag:). With the aid of these results, and in con-
junctiow with p = —(1/w) = —(1/4) from (48), equation (49) reads, on
multiplicgtion by w = 1,

dT — V) d {ar d[a ] :
AL O RN L1 LS P A =12 ...,N), 50
o du (a G;s) A E A b 0
since @(d/du) = (d/dt) and (@V/04g) =0 (identically) for all 7. Com-
parison of (50) with (8) of 6-2(b) reveals, since (T — V) = L, that the
principle of least action does indeed lead to Lagrange’s equations for the
motion of a system of particles. The validity of the principle 18 herehy
proved,
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(c) In the case of a single particle of mass m without geometric con-
straint the principle of least action leads directly to the differential equa-
tions of the particle’s orbit, with the time variable { eliminated.  In this
cage we have

. ds\’
T = %m(a&z + g2+ ) = %m (ﬁ) ; V = Viz.y,z2), (51}

g0 that the constancy of energy (10) of 6-2(¢) reads

1 A% o m_ Vv ¢
ém(ﬁ)ﬂﬂ V. ‘ 52)

# A
With the first of (51), and on substitution from {52), the aebion (42) is
given by \ o

. iy ds Z 7 3 \/_‘__- [83 \/‘;{J:_Td s
L ik = — s = (A -V ods,
fr=m fn (dﬂ) # mL a am 2) 09

If, for example, x is used as the independelgt\\rari}_‘x_‘blc in the eeuations
describing the particle’s orbit, we write ds&%/1 + y'* + 2 dz, where
the primes indicate differentiation with ¥espect to 2, so that (33) reads

I* = V3 ["VE IV VTF T T et (54)

In the substitution from (52)into (53) the constancy-of-energy require-
ment of the least-action peinciple Is taken care of, so that the exirem-
ization of (54) with pespeet to functions y(w} and z(x), prescribed at
z =2 and z = zy ‘is\e\ﬂected by the particular y(z) and z{z) which
deseribe the actual\otbit of the particle between a given pair of fixed
points. Accordimgto (57) of 3-8(a), therefore—with appropriate changes
of notationfﬁhé differential cquations of the actual orbit are the pair of
Euler-La%én‘ge equations

S A AN ¥ dfof '
O 9 dv (Gy‘) =0 T (@) =9 (35)

}here f is the integrand of (54).

Apphication of the preceding result o specific examples is left for the
end-chapter axercises.

6-7. The Exiended Hamilton's Principle

For applicai’;ion to dynamical systems which involve certain types of
forces not derivable from a potential-energy function, we have recourse

toa for_m of Hamilton’s principle somewhat more general than the state-
ment given in 6-2(a),
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We consider a system of p particles subjeet to given geometric con-
straints and to a set of forces which are only in part (if at all) derivable
from a potential encrgy ¥. That is, the three cartesian components of
the force influencing the motion of the jth particle are given by

oV av . av . .

- o FiP ~ + Fi ~ + F® G=12 ....,0),
(56)

where ¥V = V(xyyn2y, - .« sEnYp?s), and the components of the non~

conservative part of the force acting upon each particle are functions ef

the coordinales v, 9, 2y . . + , & Yp 2p Of the system and the {Eime

variable £. If the generalized coordinates which describe the configu-

ration of the system are i, gz, - . . , @y, We define the set of ‘g'fgnem.’.ized

force components D
s ‘\
= oopy 0% o OV o 9% ;o
EF 2 (Iz e + Fy 30 + F¢ 7 (z,x'.\\l’z’ cL. LN (BT)
Pt RS
We aceept as applicable to the dynamical :r?:l:dtim of a system of parti-
cles under the influence of the forees ’ge’s(:ribed by (86) the extended
Homdlion's principle: N

O

The actual motion of the given sysiep@.fs such as to render the integral
4 N
1= ["(1eV + Y [Gan)a (58)
' \\ k:r;[

an extremum with respesd to continuously lwice-differentiable functions
@), @), . . ., q{a)‘ or which qiti) and qits) are preseribed for all
i=1,2 ..., NOHere T = T(q, - . - A%y - - - 4} is the kinetic
energy of the system, and the Gy, expressed in terms of g1, qa, . - ., ¥,
¢, are given bf (57). The indefinite integrals in the integrand of (58) arc
to be regarded in such fashion that
9, ) e
205 [e )= =12 (59)
iy
k=1
In the important special case in which the generalized forece com-
bonents are explicitly independent of the generalized coordinates, the
indefinite integral [Gi dgy may be replaced by Gigs for each k; that is,
the integral (58) may be rewritten as

7= L"(T —V + i quk) dt. (60)
k=1
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Because of (59), however, the equations of motion derived from the
extremization of (60) are no different from those derived from the
extremization of (68) [see end-chapter exercise 13{a)].

It is clear from (57) that the generalized force components are ordi-
nary cartesian force components if we empley the cartesian coordinates
as generalized coordinates. If, for example, we have ¢; = v, for 2 par-
ticular pair of values of ¢ and £, it follows from (57) that G, = F®,

N\
EXERCISES

1. Consider a system of p particles moving under the influcncee of n sét:c?f forces as

described in the opening paragraph of 6-1(z). In the course of ils/Adtion hetween

two given configurations [see 6-6(a}] the system has done upon it‘}ay\the given forees
an amount of work defined by (™

p R
W= Z [ (F;‘f) dx; -+ FLn dy, + I"E,j) dz,—), (ﬁ].)
i=1 PN

where the jth line integral is computed over the pp.tbs];{:rsucd by the jth pariicle.

{a) Show that the integral (61} is equal to the\oss of potential cnergy of the system
i (1) hoids. A

(b) Bhow that the work (61) is given, itnorms of the generalized foree components

defined by (57) of 6-7, by )

N

giteh
.I;-“‘ Gy dgs,
1

P |

where .q‘g” and g7 = 1,2,\\. + - N} respectively deseribe the initial and final con-
figurations of the systef

2, Bhow that a vetessary condition for the equilibrium of a conservative system is

o ey _ .
\\ a =0 G=12 ... ) (62)
Hine: Taiaah -, .

INT: Uaﬁlg th_e fact that I'is & quadratic form in the ¢., set all the g; and 4, equal to
zZero ng{sr. carrying out the differentiations indicated in (8).

o&\'lgntmduce a,.cnnvenient set of generalized coordinates and deri ve the (Lagrange)
e ations of motion for each of the following systems: a single particle of mass m s
imvolved in each; -

{a) A particle is constrained to lie on a given circle of radius & in n fixed vertical
plane; V = mgz, where g = positive constant, and 2 ~ vertieal coordinate measured
upward frora any convenient horizontal line in the plane {(simple pendulum}, HINT:
T__ﬂtmduce the anguiar displacement () from the vertical of the line from the conter of
virele to the particle; ¥ = mgR(1 — gog 0, T = imR2.  Axswenr: RO + gsin & =0.

\x.d
e
A\ D

s

i {¢) A particle ig constrained to move on
¥ = mge, where 7 = poaitive constant, and

menic oscillator), ANSWER: mi + by — 0.

the surface of a given sphere of radius B;
# = vertieal coordinate measured npward
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from any convenient borizontal planc (spherical pendulum). Hix: Introduce

;= Resinfeon g,y = Relnfsineg,z = —Reozd T = imRé® + $?sin? ).
{d) A particle is un consirained; ¥ = mgz, where the symbols have the same mean-
ing #s in part {c} {projectile), ANswER: £ =0, § = 0,2 = —p.

4. For each of the systems listed in exercise 3:
{a) Determinc the generalized momenta. Axswrr: For exercize 3(b): p = mab.
{5) Write down the hamiltonian function, Axswer: For exercise 3{b):

(7Y L 1ppe

for exercise 3(dy: H = [(pt + p + p2)/2m] + mgz. .

{¢) Construct the Hamilton cquations of motion. ANSWER: For exercise, B(b):
(pim} = &, p = —kx; for exercise 3(d): P: = 0, g, =90, 9. = —mg, x‘f—’*(p,;/m),
i = (p,/m), & = (p:/m)}. ~\ .

5. Use excreise 2 to determine the equilibrivm positions, if any, for'the)systens of
exercise 3. Axswer: For exercize 2{¢)} 8 = 0, «; (0) 2z = 0;(c) # =Q,’\1r'; {d) none.

6. (¢) Apply the canonical transformation generated by 8 SO hm 22Q to the
system of exercise 3(b); derive the transformed equations)ef motion. ANSWER:

b= = Em e, P =3i~Emat, K=~EmP@ ¥A Q= VEm @+

Q"

() Integrate the transformed equations of motigh obtained in part (z) and use
the transformation relations to obtain p and x as functions of ¢ (and two arbitrary
congtants). RN

{¢) Integrate the Hamilton equations gfjrho;cion obtained in exercise 4 for the
system of exercise 3(h). Show, by converient designation of the eonstants of integra-
tion, thai the results sre identical with those obtained in part (b) of this exercise,
ANSWER: z = xp Co8 wt f- (pgg’\/w gln wi, p = pocos el — To +/km sin ef, where
w = v/%/m, and Ty, pe, arc aphitkay constants. (It may take a bit of juggling to
get the result of part (b) into thisform.)

7. Carry out the details of deriving (30} from (37).

8. Discuss the validity s the use of the solution ue =0 = 1,2, . . . N of (29)
in the event it is not poilte, Hint: Consider the gpecific purpose for the introduction
of the g, into the exfrémization problem at hand. Answer the crucial question: Is
this purpose fulfilled/if all the p. are set equal to zero? ANSWER: Yea, automatically.

9. (s} Write\down and solve the reduced Hamilton-Jacobl differential equation
for the S}tgt@ni'of exercise 3(b). Thus write down a complete solution S of the tirne-
dependen‘tﬁl-lamilton-.]acobi eguation. ANSWER:

1
8 = é Ak [a’ gin™? (-2) + x4/ ot — x’] — 3 katt,

where o = /3 /k. _

(b} Use the result of part (a) to derive, by means of (35), the solution of the Hamil-
ton equations of motion of the system, Compare with the result of exercise 6(c).

10. (@} If § is given by (36), where S* iz a complete solution of (37), and if we
thoose o, = B, what is the significance of the set of equations [from (35}]
fi= —(03/das) fori =2,3, ..., Hmm (o on to parts (), (¢} below.

(b) Carry through the work of 6-3(d) withowl introducing «y = (B — ai — o3);
ingtead, let o, = E. In particular write down the equations 8y = — (28 /8e1),
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Bz = —(38/8az). Interprot these equations to show that the orbit of the partige
lies in & plane parallel to the 2 axis.

(¢} Show that the result of part (b) is equivalent fo the pair of cquations ebtained
by climinating ¢ from the three equations of (41).

(d) In 6-3(d) consider the particular casc ¥ = mgz, with the nitinl conditions
(0} = 5(0) = 0, 2(0) = 2o, (0} = g cos ¢, 2(0) = 25, 2{D) = ro sin o, {0 < g <),
Show that the orbit is the parahola

z =2 + (x — xp) tan ¢ — Bg— {x — roy? see? ¢
v
in the plane y = 0.
11, (a) Apply the least-action principle to the unconstrained puoticle unc]{r the
influence of ¥V = V(). Show that the orbit equations arc given by
£z dz ¢\
¥ = = z + ca =g | e s NS
1

Hint: Use the fact that the integrand of (54} iain this case ex ;'rjif?i;,] v independent of z.
Apply (59) of 3-8(p), with appropriate change of notation. .\ "

(5) Show that the result of part (&) is identical with thahaf G-5(c} when { is elinai-
nated from (41) (sec excrcige 10(b,s) above). O

12. (a) A parficle of mass m constrained to lic,i’p given plane has a potential
energy which is a function only of its distance f‘roﬁs a fixed point in (he plane. Use
the principle of least action to derive the equatidn®

f .~.’:." dr

¢ =0 N
‘V<?¢4(E — V) — ¢ty

of the particle’s orbit, where (r,¢)/are ;;lane polar coordinates.

() Apply part (a) to the sgechl case V = —(k%/r). Identify the orbit in each
of the cases £ > 0, E = Q,#\< 0,

{c) Sohfe the problem of part (), and subsequentiy that of part (b), by the Hamil-
ton-Jacobi method. HOubmion: T = LmG? 4+ ¢242), p, = mt, py = mrid,

AX
A 1 :
Rl I ER I T
\..

\ 8* = arp + f\/2m(E -~V - (“ﬁ)gdr;
N Ea

3

4 0\‘ '3
usenthe second of (35) with 1 = 1.

3. () w‘ith the aid of (59) show that the extremization of hath (38) and (60) leads
to the equations of motion .

aT _d (aTy _ &V , .
i al\an) ~ag & G=12- M.

(&) Apply the result of part () to the problem of the harmonie oscillator of exercise

3(b) in which a force wh ; i ; ; i FER'
Wi + k= P, whase ¥ component 18 F () js applied to the particle. ANSWER:



CHAPTER 7
TWO INDEPENDENT VARIABLES: THE VIBRATING STRING

7-1. Extremization of a Double Integral

(2) We consider the double integral® Q
.\\\’
1 = [[ i ymmaw)de dy L)
D " N/

ol

carried out over a given domain D of the xy plane. The gi{n;n function
[ is twice differentiable with respect to the indicated arg\uﬁlent-s. We
proceed to derive the partial differential equation which must be satis-
fied by the funetion which renders (1) an extremu;n‘?\%{th respect to con-
tingously differentiable functions w(z,y) which assume prescribed values
at all points of the boundary curve ' of the donrain D.

To effect the cxtremization. of (1) we‘emp’l’oy the methed of 3-3(b)
whereby we introduce a 011e-parametelj’f'ai‘{nily of comparison funections

Wiey) = wieh) + enlza), @)

N
where w(z,y) is assumed tode'the actual extremizing function, and e is
the pavameter of the family. “Thus no matter what the choice of 9{x,u),
arbitrary to within contintous differentiability and
\ W

D7 aey) =0 onC, ®)

we have t-hatj;h‘e\integral formed by replacing w by W in (1) is an extre-
mum for ¢ 20, That is,

mJ N

@, I'(0y =0, 4

where

Ie) = f[ Sy, W, W2 W )z dy. (5)
¥

!In this and ensuing chupters we cinploy, whenever the ususl notation becomes too
cumbersome, subscripts to indieate partial differentiation. Thus we write w, for
(Bw/82), 1., for (9%w/ay ax), ete.

! We use the term “extremum” here in the sense of 3-3(¢}, with obvious extensgion
to the cuse of funetions of fwo variables.

a3
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Using (2) to compute (0W/0e) =, (W o/0e) = may (BW,/0€) = ny, we
differentiate (5) with respect to ¢ to form

I = fj(af + 3

Since, according to (2), setting e = 0 ig equivalent to replacing W by w,
we therefore have

™\
Q) = bff af -, f )dxdyﬁo,\ ®

'\

Ny

Bf 'r.l,c + Eﬁf—]‘: ‘ﬂy) dx dy.

because of (4). ~
Applying Green’s theorem (22) of 2-13 to the ﬁnal two terms of the
middle member of (6), we obtain

o= o[k - 2 (E) - 5 ()]
+I (ag,%‘%%ﬁ)ds @

[f [aw (&%{) ‘ay ai};fﬂ)]d“dyr (8)

AN
L)

because of (3). Fro@s the basic lemma, of 3-1(¢) we therefore conelude
that the extremizing function w = w{z,y) must satisfy

\ o af af
\:\ w oz (aw,) ay (awv) 0 (9)_

evel:ywhere in D.
- By We may directly extend the result-of (a) above to the cascin W hich
t’he functions eligible for the extremization of (1) are required to gatisty
no special condition on the boundary €. The only alteration of the pro-
cedure of (o) is t0 remove the restrietion (3) and so adopt the result (7)-
Since the right-hand member of (7) must vanish for all choices of arbi-
trary differentiable (z,y), it must in particular vanish for those n which
;sahsfy {8). For sueh functions n equation (7) reduces to (8), and W
immediately conclude the applicability of (9). With (8) equation (7

"beeomes
o dy.  of de
Lﬂ(awxds @;Eg)ds =0,
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for n arbitrary along C. Applymg a form of the basic lemma of 3-1, we
therefore have

I = 0 along ¢ (10)

as the condition which must be fulfilled in case the functions eligible for
the extremization are not preseribed on €.

In case the eligible functions are preseribed on a portion of ¢ but are
arbitrary on the remainder of C, it is clear from the preceding paragraph
that {10} must hold along the remainder of €. That is, every point of
( is characterized by either the prescription of w or the fulfillment of {8)
by the actual extremizing function . O\

{¢) By adapting the procedure of 4-1 we achieve the fo]]owmg résult
for the simple isoperimetri¢c problem involving two mdependent variables:
The function which extremizes (1) of (@) above with respect to functions
# for which the integral .u..\‘

= ﬂ oleimmoredz

has a given prescribed value must satisfy the ‘E\ler-Lagrange equation

of* f* (af*) .
dw 8x Wy 63; w, ’

where f* = f + Xg. Along portlens of ¢ on which w is not preseribed,
the condition (10), with f repla‘&ed by f*, is fulfilled by the extremizing
function w. \\

7-2. The Vibrating Sizing

In this section 1\0“ ;a,pply Hamiltor’s principle [6-2{a)] to a system
involving a contimous distribution of mass—as distinguished from & dis-
crete set of masg\particles, to which our attention is confined in Chap. 6.
The means foreffecting this application is the simple device—employed
with Erealt, “Success through the domain of “continuum mechanjes”—of
Teplacmg‘sums over discrete particles by integrals over the continuous
mass distributions.

(a) We consider a perfectly flexible elastic string stretched under con-
stant tension r along the x axis with its end points fixed at = = 0 and
¥ = I. This undistorted state is called the equilibrium configuration.
Following the proper type of stimulus, the string is permitted to vibrate
freely in a plane containing the # axis in such fashion that each partlcle
of the string moves in a straight line perpendicular fo the z axis; the
amplitude of vibration is supposed so small that the slope (with respect
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to the 2 axis) of the string at any point is small compared with unity at
all instants of time {. We further assume that there is no frictiona] (or
other) damping, so that we deal with a conservative sysicm.

The fransverse displacement at time ¢ of the particle whose equilibrium
position 18 characterized by its distance z from the end of the string at
2 = 0 1s denoted by the function w = w(z,t); thus w(z,2), with0 g z < L
describes the shape of the string during the course of the vibration. The
slope of the string is given by (dw/dx) = w.(z,f) as a function of pOsition
z and time £. At time { the velocity of the particle at a particular valye
of z is denoted by (dw/di) = w(z,f). The fact that the ends afexed
{with zero displacement)} at £ = 0 and = L supplics the en(l;pgint con-
ditions w{(0,t) = w(L,t) = 0, for all ¢, A\

Since the string is perfectly flexible, the amount of wark“which must
be done upon it in order to effect a given distorted cou.ﬁ‘gi‘rmticm must be
employed merely lo tnerease the length of the st-ring{géléttive to its equi-
librium length L. Therefore, in order to complts,the potential energy
¥ of the string at an arbitrary instant of timp\\\:e must computc merely
the amount of work which is required to s ét}h it from the length L to
1ts total length in the configuration exhibited at the given instant.  Thus
since the stretching force is equal to the tefisiont 7, the potential energy is

N

given by &N
V= f;\/m dr ~ L), (tn)

where the integral is clea,rb{’the length of the string in its distorted con-
figuration. With the a§s‘umption that [w.| is small compared with unity
we may expand \/1‘+ w; = (1 + 3wl + .- ) and neglect the higher
powers of w? to obtaia' from (11)

AS

T @ dedie L] - g

We as,;ni%é a distribution of mass along the string of densifty (mass per
unit lergth) ¢ (z), where ¢ = () is a positive continuous function. Thus
th&méss contained in an element of length dz at = is ¢(x)dx, with the
asspeéiated kinetic energy $o(x)dafw(z,)]2——or, simply, $ou®ds. The
total kinetic energy of the string, accordingly, is

g w? da. (12)

a

=3 JI;L ot? dx, {13)

_ With (12) acnc_l (13) we apply Hamilton’s principle [6-2(a)] to the vibra-
tion of the string. That is, the function which deseribes the actual

It is tacitly assumed that the elongation is so slight that the tension remains
eonstant throughout the stretching,
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motion of the string is one which renders
fa iz I
= f (T — Vydt = & f ﬁ) (eW? — rud)dz i (14)

an extremum with respect to funections w(z,t) which describe the sctual
configuration at ¢ = #; and ¢ = 4, and which vanish, for all ¢, at z = ¢
and € = L. (The instants £, and & > ¢, are completely arbitrary.}

The extremization of (14) is accomplished through 7-1(a) above (with
the replacement of y by ¢, w, by #) if we denote by D the “rectangle® ™
0=2x=L t £t =1t in the “xf plane.” According to the pr(‘(,el:h{ig
paragraph the functions eligible for the extremization are prestribed
everywhere on the boundary € of . Thus we may apply (9) of 7-1{a)
to the integrand f = ${ew? — rw?) of (14) to obtain

7

N
% o(x) o%w
ot = r of ’ (15)
\\.
as the partial differential equation which descm@es the motion of our
vibrating string.

{b) We consider also the case in which eachfnd point of the vibrating
string described in (a) above, instead of « bcmg maintained in fixed posi-
tion, is allowed to move frecly along ; ax stml{,ht line perpendicular to the
x axis and lying in the plane of vibration.! Mathematically the only
change incident upon freeing the(ent points in this fashion is to remove
the restriction that the functions w eligible for the extremization of (14)
vanish at & = 0 and x = L. \Since, because of Hamilton's principle, the
eligible functions are st-jllipi"esc-ribed at t = ¢ and { = {,, we may there-
fore apply the free-botmdary condition (10) of 7-1(b), with appropriate
change of notation, é}ﬂy along the “sides” x = 0, x = L of the “rectan-
gle’ D in the * plane ? deseribed in the final paragraph of (a) above.
Along these sides we have (dt/ds) = +1 and (dz/ds) = 0. Thus (10) is
reduced toy (ﬁf/a*wz) = 0; with the infegrand f = §(eth® — 7wl) of (14)
it reads\snnply,

Jw .

Frlie 0 (16}

at x =0, x = .. In case onc end of the string is held fixed and the

other is free, condition (16) holds at the free end only, of course, while
= 0 holds at the other end.

(c) Mathematically, the problem of the vibrating string is completely
équivalent to the problem of the plane longitudinal vibrations of an

'Buch an arrangement is, approximately at least, physwally feasible, The reader
iswrged to devise schemes by which the “free-end string”’ may be set up,
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elastic medium. Specifically, the foregoing results apply, for example,
to the vibrations of the gas filling a long cylindrical tube. At g closed
end of the tube the vibration amplitude w is required to vanish {the fixed-
end problem of () above); at an open end, since there is no constraint
upon the amplitude w, the condition (16) is applicable. ThLe quantity ¢
appearing in (1) is the mass of the gas per unit length of the tube angd is
in general a constant; r is a constant related to the compressibility of
the gas. In the remainder of this chapter we speak only of the vibrating
string; it should be understood, however, that our results arc getierally
applicable to the gas-vibration problem as well. A\

7-3. Eigenvalue-Eigenfunction Problem for the Vibratigg.étring

(@) The initial attack upon the vibrating-string equgxiié‘h (15) invelves
seeking a solution of the form AN

= \ 17
W= @0, (7

where ¢ is independent of ¢ and ¢ is independent of x. From (L7} it fol-
lows that w., = ¢"(2)g(!) = ¢"¢ and €5 o(x)q" (1) = ¢¢, so that sub-
stitution into (15) gives, on division by (eeg/r),

@t g
N (18)
Since the left-hand menﬂie} depends upon « alone and the right-hand
member upon ¢ along,\i\ﬁ follows that the only cireumstance in which
(18) can hold for gl Yalues of the tndependent variables x and ¢ is that
both members begqual to a constant! independent of z and ¢; we denote
the constant, A% this point undetermined, by (—A). Thus (18) implies
the two oyguﬁfy differential equations

.\':."‘ @ ~ @9 + (2} = 0 ii} ¢ +A=0 (19)
~O & ’ g T M=
\)etermination of the values which may be assigned to A depends upon
the particular set of end-point conditions we happen to deal with. If
hoth ends of the string are fixed, the conditionsg w(0,t) = w(L,) = 0 lead,
through (17), to the conditions $(0) = (L) =0 upon ¢. On the other
hand if one or both end points of the string are free, the vanishing of ¢
must be replaced, according to (16) and (17), by (d¢/dz) = 0-at one or

1 Thig lrie of argument, the basis of ¢

he so-ealled method o sepuralion uf variables, is
employed repeatedly in chapters follow ek '

g,
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bothof z = 0, & = L. In what follows, we suppose that we have to deal
with one from among the possible sets of such end-point conditions.?

Thus we arc faced with the problem of not only solving (19,i) but of
fitting the general solution ¢ = ¢{x,A} to the required end-point con-
ditions. It can be shown? that there exists only a discrete set of values
of A for which the end-point conditions are satisfied by ¢(z,A). (It is
quite obvious that ¢ = 0, identically in 0 = » < L, satisfies both (19,i)
and any of the various sets of end-point conditions, for arbitrary ». This
trivial solution must be ignored as irrelevant to our problem.} This
privileged set of values of A we may list in the inereasing order Ay, As, . . N}
Ay . . . ;i has infinitely many members, of which there is a smallest
A1, but for which A, is unbounded as n — =. Any such valué of A—
for which there exists a solution of (19,1} which conforms \vétli the end-
point conditions—is called an eigenvalue of A; the correspofiding solution
is called an eigenfunction of (19,i) in conjunction with the\particular end-
point conditions, Corresponding to any one eigenvalup there is one and
only one linearly independent eigenfunction; th(g.\ibf'ating-string eigen-
values are therefore said to be nondegenerate~Clearly, the totality of
eigenvalues of A associated with a given problémi‘depends upon the values .
of L and r, the function ¢(z), and the palticular set of end-point con-
ditions involved in the problem. \y

Since hoth the differential equatiomrand the end-point conditions which
the cigenfunctions are required o satisfy are linear and homogeneous,
it follows that the product of an }igenfunction by any nongero constant is
alse an eigenfunction correqi{dnding to the same cigenvalue, For this
reason we may impose the,convenient restriction

A\ X

Y ﬁ cotde = 1 (20)

o X
\

AL
for every eigén}unction we deal with, (Because ¢ > 0, the left-hand
member qf\'(if]) must be positive for any real function ¢ not identicaily
zero. {In)¢ase the integral were not equal to unity but equal to ¢?, say,
the corrésponding integral, with ¢ replaced by {¢/c), would be unity.)
Any function ¢ for which (20) holds is said to be normalized with respect
to the weight function ¢ in the interval 0 £ =z £ L—or, briefly, normalized.

(b) There are no negative eigenvalues of ». To prove this fact we
multiply (19.i) by ¢ and integrate the resulting equation from & = 0 to

1 That is, we deal with a string with both ends fixed, both ends free, or one ejnd fixed
and the other free, with only one of these cases considered in any given discuss:ol_:n.___

*'The proof ix heyond our present scope.  See, however, Ince, Chap, 10. Sée’also
exercise 2 at the end of this chapter.
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¢ = L. We thus obtain, with the aid of (20},

L dzﬁb d¢:|L ]‘L(d—q&)z
h:—TL {,‘btﬁzd$=—f¢@0+f o \dz dz, (21)

on integration by parts. If ¢ is an eigenfunction, either ¢ =0 o
(d¢/dx) = 0at z = 0 and x = L, so that the right-hand member of (21)
reduces to its final term. Sinee = > 0, we therefore conclude that no
eigenvalue of X ean be negative.

With the exceptional case A = 0 left for end-chapter exercise 6(l) we
employ the positivity of the eigenvalues of A to solve the time-dependent
equation (19,i). If A, is an eigenvalue of A, the general sGlnfion of
(19,ii) is O

g = gn= A, 008 VAt + B.sin vt (n=1“!2:'3",' L, (29)

where A, and B, are arbifrary constants. If ¢“.=z\¢\>ﬂ(x) is the corre-
sponding eigenfunction, !

W o= w, = ¢u(2)(dn cO8s VAt + B, sin \/E@\(n = 1,23, ... (23

is therefore, for each n, a solution of tHe, 'exquation (15) describing the
motion of the vibrating string under algiven set of end-point conditions.

Clearly, the solution (23) is per’i.o&i'c' in the time variable i; the period
is given by (2r/+/X.), the frque'r:c'y by (+/A./2x). Thus we conclude
that the elastic string has the ability to vibrate with any of a discreet
set of frequencies which afe‘determined by the eigenvalues of A, In
other words cvaluatio QE the set. of eigenvalues associated with a given
vibrating-string problem provides the set of natural vibration frequenetes
of the string. In patticular the lowest eigenvalue A, provides the so-called
fundamental Frequency (v/A;/2r) of the string. In 7-5 below it is demon-
strated that-the general motion of a vibrating string is » linear super-
{)OSi(tiO;l.Qf\ hie various single-frequency modes of vibration represented
3y (23S

N\
7\?}2; “Eigenfunction Expansion of Arbitrary Functions. Minimum
Characterization of the Eigenvalue-Eigenfunction Problem

(a) We consider the sequence of normalized elgenfunctions ¢, ¢o, . - -

fpn,_. .. ?,nd corresponding eigenvalues SN D VO ,a.rranged
In increasing order, of & given vibrating-string problem: that is, for each
n=123, . ..., the function ¢, satisfies

.t Aot =0 (0 <z <) (24)

and either
¢ =0 or ¢ =0 (25)
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at £ =0 and = L. Rewriting (24) with # = j, we muitiply this
equation by ¢i(7 # k). Reversing the indices j and % in the result so
achieved, we obtain a second such result. Subtracting one from the
other of these two results and integrating from z = 0 to z = L, we get

L L
(e — M) ](; ooy dr = 7 j; (drd; — Gidy)dz
ety — didh) |1 (26)

on integration by parts of each term of the sccond member. Sinee\,
¢ and ¢; are eigenfunctions of the same problem, they satisfy the sant
conditions—either of (23)—at each of x =0, 2 =L, It thereforéﬁﬂ—
lows that the final member of (26) vanishes. Also, since j gﬁlfs-——and

7

thereforet »; = Ay—we have N

i

ak & i

f‘ codpdr =0 forj £k o @7)

Any two functions ¢;, ¢, which satisfy (27) a.rq,@i’d to be orthogonal
with respcet to the weight function ¢ in the j@erval 0 £z £ L—or
briefly, orthogonal. A set of functions ¢i, @/, ., @a . . . of which
every two distinet members satisfy (27),is'szi,id to constitute a set of
orthogonal functions (with respect to the, '\?g.'e:i:ght funetion ¢ in the interval
02z =1L) In case all the functicns wof an orthogonal set satisfy the
normalization condition (20) of 7-3(a)—with the same weight function
and same interval-—they are said to constitute an orthonormal set.  Since
the vibrating-string eigenfunctibns are required to be normalized, the
result (27) discloses the fa%b that they constitute an orthonormal set.
This fact is best expressed’through introduetion of the Kronecker delta
8, a symbol which dénttes 0 when j = k and 1 when j = k. Thus we
have for the eigenﬁin}étions of a given vibrating-string problem

,~.;'§ [ citn dz = o5 28)

(®) Wﬁéﬁﬁté without proof the following theorem conecerning the expan-
sion of Ap/arbitrary function in terms of the known set of eigenfunetions:

If the arbitrary function g(z) is piecewise continuous and piecewise
differentisble! in 0 < z < L, the series

m

. L
E endu(z),  With ¢a = L o ¢ug dix,

=1
converges uniformly to g(z) in every subinterval of 0 £z = L in which
g{z) is continuous. We may therefore write

t Bee end-chapter exercise 3.
1 Bee 2-1.
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L]

9(z) '=_Z Cnpn (i) (cn = ];L TPag dx)- (29)

sml

Moreover, in any subinterval in which ¢'(z) is eontinuous, we may
differentiate (29) term by term to obtain

Ll

! = ﬂ:; H 3
7@ = ) cadiio) 8

n=]

and the convergence is uniform. (Possible exceptions at a(=0 and
¢ = L are mentioned below.) O

(Given that there exists a series expansion of the type ~shown in (29),
we get the parenthetic part of (29) directly from the orthonormality rela-
tionship (28). The details are left for exercise 4 at the,}ﬁd of this chapter.

The matter of end-point conditions requires speeial discussion. If the
eigenfunctions employed in the expansion of & given function g{2) accord-
ing to (20) satisfy the condition ¢, = 0 ap = 0 {or # = £, or both},
the series (29) clearly converges to zerofabvx = 0 (or » = L, or both).
Thus, although the function g(z) may Pe eontinuous in the neighborhood
of z = 0 (or ¢ = L, or both), the sufiof the series (29) is discontinuous
at 2 = 0 (or 2 = L, or both) irytié,’s.e g(x) does not vanish at ©z = 0 (or
T = L, or both). We encounter no diffieulty from this fact in our study,
“however, Q

If, on the other har{;\‘t,ﬁe eigenfunctions ¢, which appear in (29)
satisfy the condition ¢, = 0at x = 0 (or z = L, or both), the difficulty
of the preceding parapraph does not arise at z = 0 (or z = L, or both};
that is, if g(x) is c@ﬁtinuous at & = 0 {or z = L, or both), the series (29)
is also continubls at » = 0 (or z = L, or both). The derivative sories
(30), however/is discontinuous at z = O (or £ = L, or both), in case
¢'(x} is continuous and different from zero at £ = 0 (or x = I, or both).

(32 Mith the aid of the expansion theorem of (h) above we demon-
st%te? the following minimum characterization of the eigenvalue-eigen-
function problem for a given vibrating string;

The kth etgenvaluet \, is the minimum of the iniegral

L
I=r[*o2dy (31)
with respect to those functions & which satisfy the normalization condition
L
[Feoraz =1 (32)

1 The totality of the eigenvalues

ig au i i er
MM g supposed arranged in the ascending ord
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and the (k — 1) orthogonality relafions
L -
[Fotodz=0 G=12... k=0, (33)
where ¢ 15 the eigenfunclion that satisfies

4 het =0 (G=123,..) (349)

nd the sel of end-poinl conditions (¢; = 0 or ¢; =0 at z = 0, z = L)
associated with the problem. Further, every function ¢ eligible for the
minimization must be continuous everywhere in 0 £ x = L and havedh
first derivative ¢ which is piecewise continuous in 0 = ¢ = L. O\
In the problem of the string whose end at z = 0 {or 2 = L, orhoth)
is held fixed, the additional restriction ¢ = Oatx = 0 (orz = L4 of both)
must be imposed upon the cligible functions. (No specialfestriction is
imposed upou the eligible functions ¢ at & = 0 (or z = Lio¥both) if the
end of the string at z = 0 (or z = L, or both} is freey \% '
The minimum e of { under the stated restrictions tg hreved when ¢ = dp.
(We note, in particular, that the function,s"\&&eligible for the first
minimization of f, whereby the minimum s the lowest eigenvalue A,
are require] to satisfy no orthogonality cquition (30).y
To prove the stated characterization y¥e expand the arbitrary function
¢ eligible for the kth minimization 0£~;(3"1) in accordance with (29} and
(30) of (b) above:

w £
=3 et FEN i (o= [ oowds) 6D

n=l

N\

n=1

(The eigenfunctions\é:raployed in the expansion are associated with the
particular vibrating-string problem under discussion. Thus, according
to the above st\-&efnent of possible end-point restrictions upon the eligible
functions ¢,’ésr'ery é is reguired to vanish at x = 0(orx=0L,or both)
if and 01113«';3 every ¢, vanishes at 2 = 0 (orz = L, or both). We there-
fore a\?‘&ici’ the end-point-discontinuity difficulty mentioned in the penulti-
mate paragraph of (b) above. On the other hand, at a free end point,
the second serics of (35) may be discontinuous {according to the final
paragraph of (b) above), since each ¢, must vanish there, while ¢’ is arbi-
trary ; this fact involves no difficulty in the proof which follows, however.)
From the parenthetic portion of (35) it follows that the orthogonality

A reading of 0-9(¢) at this point (with a few obvious minor changes of wordil}g)
should be extremely helpful in achieving = fuller understanding of the foregoing
characterization.
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conditions (33) are satisfied only if
€1 =€y = - ' = Cp = 0, (36)

Substituting the first of (35) for one factor of (32), we obtain!

oy

j;c o dr = 2::1 Cn ﬁ)f‘ ot dr = 2 e =1, (37

n=1

with the aid of the parenthetic part of (35}). A
Substituting the sccond of (35) for one factor of (31}, we ul}t&in
oA\

=z i Cn ﬁ‘n oo’ dr = 7 5: €n {qﬁﬁ,qb]i — ﬁ:cbf;& d;;:}: (38)
f=1 "

n=1

on integration by parts.? Since either ¢ = ¢ or ¢;~‘%‘0 at both oftz =0,
¢ = L, the integrated portion of every term of (88) must vanisl. With
the aid of (34)—with j replaced by n—(SS)z.t@;l‘eforu becomesy

= oo

_ _ Y L " — \f‘.".:‘ L L g
I = “zc“ , (76,)¢ dx PRG ﬁ) Tt d = Ex,,cm (39)

"= w1 n=1
~

according to the parenthetic purt: o (3a).
Taking into account (36) and(37), we may rewrite (39} as

74\
"

”:...\ » =
I = Z Anel = ?\k\g‘ﬁi + Z (An = Medel = A, + Z (An — An)el.
n=k N =k =k

n=k

Since ha > N B> &, it therefore follows that / = Ax; the equality sign
holds if ¢; z5lMand cppy = chyy = Ceps = - - = 0. DBut according to
the first 0{(‘85), this choiee of the set of coefficients e, (clearly consistent
with (37})," taken in conjunction with (36), implies ¢ = ¢;. The stated
g The interchange of summation and integration, carried out in the gequel without
‘e@?}lmt st-s,tefmcnt- of justification, iz fustified by the wuniform convergenee of the
geTies expa'nsmns, as stated in (b) shove.  Sinee ¢’ is mevely piecewise continuous, the
second series _of (35} may be discontinuous a4 a finite number of points. The conse-
que‘nt nonuniformity _of convergence is confined, however, to a finite number of
arbitrarily narrow subintervals whoge contribution to any term-by-torm integration
over l}- = @ g L gan F)e made arhitrarily small—and therefore zera.
* It is this integration by parts which requires the continuity of the eligible functions
E‘;, raQtll(;r than the merely Piecewsse coutinuity needed for the first expansion (35)
288 L= ),
t 8ec the parcathetic -

emark of the precedin " r urse,
have both ¢ = 0 and 4. p E paragraph. Wo may, of co

= 0ut one or both end points.
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minimum characterization of the vibrating-string eigenvalue-eigenfunc-
tion problem is hercby proved. Application is found in 7-6 below.

7.5. General Solution of the Vibrating-string Equation

(x) By moans of the cxpansion theorem enunciated in 7-4(b) we may
obtain & solution of the vibrating-string equation (15} of 7-2(a), together
with an appropriate set of end-point conditions, which is sufficiently
general to cover at least those cases which are of physical interest. The
method we employ bypasses the cquation (15) itself, but instead returns
to the integral (14)— namely,

. ~
=1 ﬁ f E (et — rwdds df (20

L\
—whose extremization according to Hamilton’s principle leadsdivectly
to (15). Further, the method presupposcs the prior so]uiign' of the
sigenvalue-cigenfunction problem associated with the givje}l vibrating-
string problem; 7.e., we have at our disposal the sequenee}o? orthonormal

cigenfunctions éi, ¢z, « - - , Pm . . - and correspendling eigenvalues
Ay Az, - -« 5 Am, . . - for which \\
L Nartn =0 O EBED) (41)

and either ¢, = 0 or ¢, = 0 at z = 0 and 'z = L, for each m. (At &
free end point of the string ¢,, = 0; at 3 fixed cnd ¢n = 0.)

We suppose that w = w(z,f) is‘ai‘l}itrary forallfin0=a2=sL to
within the following limitationg :;(i). ‘continuity of w and @ with respect
to both & and ¢, (i) piecewisgwc:ontinuity of w, and 1, with respect to =,
(iii) w(z,t) deseribes the acidal"vibrating-string configuration at two arbi-
trary instants ¢ = £ anthi = t» (requiremont of Hamilton’s principle).
Finally, if the string 4nder consideration ig fixed at onc end point (or
both), w(z,§) vanighes at that end point (or both), for all {. Regarded
ag & function 0&1’:,\5})(3:,5) clearly satisfies the requirements of the theorem
of 7-4(b) for ¢¥phnsion in terms of the eigenfunctions associated with the
given vibra’tihg—st-ring problem. Since wiz,) depends upon %, however,
the coefiicibnts in the expansion must depend upon &.

We thtlis write, according to (29) of 7-4(b),

w = z Cnll) () (cm = faquw dx)‘ (42)

m=1

We may also expand @(z,f) as

® = i 2a0pal®)  (dn = [ oomie dz ) (43)
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according to (29). Since w is continuous with respect to t, it follows
from the parenthetic parts of (42) and (43), and from the rule [2-3 ()] for
differentiation of an integral, that d». = é.. Thus since we may differ.
entiate the series of (42) term by term with respect to #, we have the
two expansions

i

w =m21 bn(Dom(@), s =m21 en(t) 9 (). (44)

Substituting the appropriate series of (44) for one factor of eachterm
of the integrand of (40}, we obtain

N

(\)
I=1% S: j:’ (e,,, j; " bt dz — 70y, f‘ Wab, t}g:):;!t. (45)
m=1 N

Integrating by parts the second integral over z, ané\ﬁéing the fact that
either w (at a fixed end) or &, (at a free end) must-vanish at » = 0 and
z = L, we obtain (45) in the form AN

I=1 E J2 (e [ v6oit o -i~cm\ﬁf w(rg)dx ) dt
m=1 ’:; N
¥ i Eg (ém LL aqu:w“dx — AmCm LL O Pl d:c) dt
m=1 N

=1 E j:e ( C:a)‘ Amcl)di, (46)
m=1 N\ -

1

with the aid of (41)"he parenthetic portions of (42) and (43), and the
fact that d,, = &,

Thus the extremization of the integral (40) with respect to the arbi-
trary funx?n‘-w(m,t) 1s reduced to the extremization of the simple inte-
gral (46),'\ ith respect to the infinite set of functions ¢.(t). To avoid any
_possib}.e;’diﬂiculty involved in the circumstance of the appearance of
infinitély many dependent variables ¢.(f) in the integrand of (46), we
sﬁfpp’ose that all bug one—ce,(t), say—are correctly determined as extrem-
izing functions. With this we may apply the Euler-Lagrange equation
(25) of 3-3(b)—replacing y by . and z by 4, and with f = 3 ¥ (¢ —ecl)
—to obtain &, + M. = 0 as the differential equation which must be
satisfied by the extremizing functiont ea(f). Since the choice of # 18
arbitrary, however, thig equation must hold for all 5 = 1,23 ....

t Since 1.;he arbitrary elipible funetion w(z,t) is required to deserihe the actual string
configiiration at ¢ = hoand ¢ = ¢, we must suppose that ¢,(¢) is preseribed at £ = &

?Bd !t =15 There are thug no special “end-point” conditions on cul) at ¢ = £y and
= 2.
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The general solution of the above equation for ¢.(t) is—with the excep-
tional case in which Ay = 0 left for end-chapter exercise 6{c)—

eu(f) = A, cos VAt + By sin vV/Aat =123 ..., @7

where the A, and B, coustitute two sets of arbitrary constants. With
(47) we couclude from (42) that the general solution of the vibrating-
string problem is

wiz,d) = Z ou(@) (A €08 /Mt 4 Basin v/2n £}, (48)\

n=l N
A\ AN

(6) The result (48) justifies the frequently employed analysis\of any
given state of vibration of an elagtic string as a linear supgnp‘(féition of
vibrations, each of which 1s characterized by a single freguéncy. Com-
parison with (23) of 7-3(b) reveals that each term of (48)\répresents one
of the single-frequency modes of vibration which thé\itring is capable of
executing,. PN

The infinite sets of arbitrary constants Ag,-B, may be determined if
initial {f = 07 conditions are prescribed fox wvand w; discussion of this
point is rescryved for end-chapter exercige.'.{. -

7-8. Approximation of the Vibrq@ihk’—sﬁmg Eigenvalues and Eigen-
functions (Ritz Method) o~

Since precise analytical metﬁ&ls are not available in all cases, one must
n general resort to methodsJor approzimaiing the eigenvalues and eigen-
funetions associated wifhls given vibrating-string problem.’ One such
method, generally krtgwn as the Ritz method, is a direct consequence of
the minimum ch r:a}eicriza.tion developed above in 7-4(c).®

(a) Accordi;\\g;t.() 7-4(¢) substifution into

QD L
N :.\"’.‘ I =T_£] q&’?dﬂ; (49)
N\

of any¥eontinuous, piecewise diff
$(0) = ¢(L) = 0 and -
ﬁf‘ eptde = 1 (50)

he lowest etgenvalue A agsociated
blem to which L, 7, @ pertain.

ercntiable function ¢(z)—Ifor which

—bestows upon { a value no less than &
with the fized-end vibrating-string pro
Accordingly, I provides an upper bound for M.

gihle to write down explicib expressions for the

t A few problems in which it is pes :
died in the end-chapter exCreises.

eigenvalues and eigenfunctions are han
? Bee 10-10 helew, sccond paragraph.
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Further, we muy substitute inte {49} an eligible functirc:n q&(x). which
depcnds upon one or more parameters kl:’ oy oo, ke ’J- hus I is com-
puted as a funetion of &y, ke, . . . , ky, with respe‘ct-. to which par.ametexl-s
the integral is subscquently minimized. Tht? minimum 80 achieved ig
accordingly the lowest upper bound to A, obtainable through t_he class of
functions defined by ¢ and the sets of values assumed by the ¥ parame-
ters. The larger the number N, the wider is the elass of functions 80
defined, and so, in general, the lower is the computed upper Lonnd qu1" AL
(In the possible fortunate circumstanece in which ¢, for sou}e pn.ri.ml{ ar
set of values of ky, ks, . . . , ky, coincides with the actual eigerbutetion
é1, the upper bound computed by minimizing / with respeedhtd these
parameters is exactly A;.) The essence of the Ritz mcti]g.g}f’ lies in the
acceptance of the minimum of / with respect to the N' p@ru,me:!,crs as an
approzimation to A (In (¢) below we consuler apgrﬁrximut.mn of the
higher eigenvalues (Ae,hg, . . )

The closeness of the approximation of course depends upon the selec-
tion of the parameter-laden function ¢. Althéugh the criteria for the
accuracy in any given application of thewRitz method to a vibrating-
string problem are by no means clear-cut w1t generally (except, of course,
when the approximation happens to bé:perfect, as deseribed parentheti-
“cally in the preceding paragraph) pagsible to improve a given approximate
computation at the expense of inereased labor. It is possible, in fact,
to refine the method into a convergent procedure [sce (¢) below] although
the degree of accuracy is angertain at every stage and the difficulty (?f
computation increases indrdinately with each improvement of the approxi-
mation. Justiﬁcation'fm the expenditure of such labor can lie, of course,
only in the degrec ofYrgency resident in any particular computation.

{It should be ei{aphasized at this point that although one may perhaps
be inglined % idi‘s’miss as insignificant, the problem of the vibrating string
and the applieation thereto of the Ritz method, the concepts, ideas, and
tec}mi(ll{és"’involved here are of enormous significance in their extension
andvadaptation to problems of possibly greater importunce. A complete
undisstanding of the work of the present chapter is an almost indis-
pensable prerequisite to comprehension of much of the subject matter
which is found in the final four chapters of this volume,)

() Although we may employ the Ritz method as described in (a)
above to achieve, in a particular case, a useful approximation to Ay
it should be recognized that the parameter-laden function ¢ which leads
to this approximation ig not necessarily g correspondingly useful approxi-
mation to the precise eigenfunction é1(z), even with the parameters

ky ks, L y ky set at their minimizing values. In spite of this fact it
Is convenient to label as “corresponding approximate eigenfunction’ the
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function ¢ that renders the integral (49) equal to a value which we accept
45 an approximation to a particular eigenvalue. {This usage is main-
wined witheut further comment in chapters following.)

It is very often far more important to know the few lowest eigenvalues
associated with a given problem than it is to possess knowledge of any of
the eigenfunciions. s in the case of the vibrating string, the few lowest
sigenvalues involved in any vibration problem determine the few lowest,
and most important, naiural vibration frequencies; in the Sehrédinger
problem of Chap. 11 the lowest eigonvalues are the lowest, and most
important, encrgy levels of a quantum-mechanical system.  In fact gne
is often satisticd to know merely the lowest eigenvalue associated@fith
a given problem.  For this reason we touch only lightly, in.this/and
following chapters. upon the possible approximation of eigenfunctions.
[nstead, we devote our main coffort toward the developmefit of methods
which are rendily amenable to the numerical approxim\é{t‘ién of the first
few cigenvaulues. \%

() The Ritz method for approximating thexf{xsb few—say s—eoigen-
values of & given vibrating-string problem may be formulated by means
of a rephrasing of the statement of the mibiam characterization given
at the opening of 7-4{e): o\

The approxiniation Ay to the ith eigénvalue M 15 the minimum of the
integral o v

o, v (51)
zmz\ .
with respect to those fufdtiohs ¢ (belonging to the special class intro-
duced directly below) \.\*hlwa satisfy the normalization condition

"¢/
AO ﬁf‘ optds = 1 (52)

$)
and the (% f%"orthogtm&lity relations

O [fowdz=0 (m=12... k=D (53)
) 4
where ¥, is the mth approximate eigenfunctiondi.s., a function which
renders I equal to A, —form = 1,2,3, . . - -

It is clear, through comparison of the preceding formulation with
7-4(¢), that inclusion in the class represented by ¥ of all the functions ¢
which are eligible for the minimization in the precise minimum charac-
terization would provide the result A, = M for all k. Inany single appli-
eation of the Ritz method, however, we create a special subclass of eligible
functions with respect to which the minjmization of (51} 1s carried out:
We suppose that ®,(x), ®a(z), - - - &, (x) are 8 conveniently given con-
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tintous functiong continuously differentiable iIn 0 £ 2 = L. I we deg}
with & string whose end at z = 0 (or 2 = L, or both) is fixed, each of
the & (j = 1,2, . . . ,8) must be chosen so as to vanish at 2 = 0 (or
z = L, or both). The special sibelass consists of all functions ¢ which
exhibit the form

x

bbb o®d o bodo= ) o (54)
i=1
where ¢y, 63, . . . , Cs are arbitrary constants consistent with the npfmal-
zation condition (52). A

We immediately arrive at the inequality M £ Ay, since Ny the mini-
mum of (51} with respect to a class of normalized funations which is
much wider than the class represented by (54). It is nét at all ohvious,
however, that Ay £ As, since if is not generally possibie to determine
whether or not the members of (54) eligible for ¢hewsecond minimization
of (51) form a subslass of the class of function$ Wwith respect to which
the (second) minimum of (51) is the precng@genvalue Ne.  Tor, accord-
ing to (33) of 7-4(c), every member of thielatter class is orthogonal to
the precise eigenfunction ¢:; on theoqthe'r hand, each member of {54)
eligible for the second minimization>ef' (51) is orthogonal merely to the
approrimate eigenfunction ¥, aqqﬁrﬂing to (53). By the same token we
cannot tell at a glance whether'or not A; < As Ay = A., ete. Neverthe-
less, the inequality & £ Ayflecsholdfork = 1,2, . . ., s bt the proof
is not at this point withingur reach. In Chap. 9, however, 2 method i
developed by means, of\which », £ A, is readily established; a proof is
called for in exercisg'28 at the end of that chapter. We therefore borrow
the result: Bach™yis an approximation from above to the corresponding
eigenvalue A Qr, every Az is an upper bound for the corresponding M.

The lagper'we choose the integer s in (54), the wider is the class of
functiqgj} represented by ¢, and the more accurate are the approximations
we pehieve. If &y, &y, . . ., @, are the first 5 of an infinite sequence of
fungtions for which there exists an expansion theorem such as the one
stited in 7-4(h),! the approximations become perfect in the limit s — =,
for then the class represented by ¢ includes all the functions ¢ eligible
for the precise minimizations. Unfortunately, however, the difficulties
of computation generally multiply tremendously with increase of s.

Substituting (54) inte (52), we obtain

LL abldes = il SE Cic; LL e®P; dr = i i ciciois = 1, (55)
i=1 §=1

fml Fml
! Tn which ease the sequence is said to be “cloged.”
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where we define
L
Oy = O = ﬁ} o'q)@,' dx. (56)

In accordance with (54) we write the approximate eigenfunctions as

&

o= ) GG m=12, .. 9), (57)
=1
<o that the problem of finding each ¥ is equivalent to that of determining.
the set of values ™, ei™, . . ., ¢ for the coeflicients ¢y, ¢5, . . A, L.,
respectively, in (54). Substituting (54) and (57) into (53), we abtdin,
with the aid of the definition (56), \
. e ( 3
L Fon (m) == \I
o = Y Y eofoy =0 (n =12 acE - 1. (69
iz1 j=1 )
o . N
Finally, if we define \’\
L PN

subgtitution of (54) into (51) gives .:.’::'
N
AR e
&\J .
for the quantity whose minima we seek. In particular since I = Ax when

¥ = iy, it follows from,'(;’ﬂ), with m = k, that

A\
£ ) 4 &
\,\ A = Z Z cgk’c?fk’l‘.-,u (61)
N\ £=1 4=

To minj i (60) under the restrictions (55) and (58) we use the method
of La{&{’lgé multiplicrs (2-6), wherchy we form the quantity

M s 5 2 k—1 & a
- . .
I* o Z \ e Ty — A® Z 2 CitiTy — E M E 2 ¢ty i,
o A h

i=1 j=1 i=1 j=1 m=1 =1 =1
where Ao\ A, ., AV are undetermined multipliers. (In
our quest for the £th minimum Ay, of 1, wesuppose thatcf”, iy - . - f"?—n
areknown forallj = 1,2, . . ., s} Accordingto 2-6 the kth minimum

of I i characterized by the s conditions!

'We make uge of the relations Ti; = I'jc and oy = @i, here and below, without

explieit mention therecf.
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A & k1 L
*
] 3 —
%I_ =2 E el — 24W z Cifzj = E AP Z cimey = 0,
G =1 =1 m=l J=1
or
¥ k-1 g

Z (T — A®g)e; = } 2 A E Moy G=12 .. .,9. (62

=1 m=1 i=1

This set of s equations is satisfied by ¢, = ¢, ¢x = ¢, . . ., &P
In (d) below we prove that the multipliers N.°, N7, . . ., M ali
vanish. Aeccepting this fact here, we conclude from (62) 1..}%;;1: \
Y (s = Ao = 0 = 12, . i, (63)
7=l N

Sinee (63) constitutes a system of s linear hom%eneous equations in the
s quantities ¢, ¢!, . . ., ¢, which, accordifig to (65), do not all van-
ish, the determinant of the coefficients mpgtyvanish,!  That is, A® must
be a root of the algebraie equation in A %P aegrce 3

I‘u - i'LUu Flg - .'\.Ef.m.‘; .. . Ph - 1\013

e SR S TR
T,y — Aoar ]ggz\—’ Aoge . .. T4 — Ages

Under the assump’gio \that A = AW satisfies (64) and therefore that
the system (63) is, s@ti’sﬁed, we multiply the 7th equation of (63} by e,
forall i = 1, 24 T; ., 8, and add the resulting equations—sum over ¢,
that is—to gj(t:ﬁﬁ

(%w:

& L)
R\ Y Y Ty — A®ayefe® = 0. (65)
~) i=1 5=1
S¢ing (65
SolWing (65) for A®, we find, with the sid of the normalization (53)—
with ¢ replaced by ¢® {or all subseripts—

LY
AW = Z z P‘:J-cj,k’cf"’ = Ay, (66)
i=1 je1

according to (61),

Since 1:'-he determinantal equation (64) has no explicit dependence upon
the specific choiee of the index k, we must conclude from (66) that its

tdee 2-8(b).
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s roots, arrenged in ascending order, arc the approximate eigenvalues A;,
As, . - ., A——the quantities whose values we seek. -Thus application of
the Ritz method to the approximation of the first few eigenvalues associ-
ated with a given vibrating-string problem involves merely (i) choosing
a suitable et of functions &, ®,, . . . , &,, (i) computing the scts of
integrals delined by (56) and (59), and (i) solving the algebraic equa-
tion (64). TIixamples of the application are found in the exercises at the
end of this chapter.

(dy The Lagrange multipliers A\ are mtroduced in (¢) above to ensure

fulfillment of the relations (38) by the.set of ecefficients ¢i®, e, . » >
¢® which satisfy the system (82) of lincar equations, with ¢ = £f® for
all i=1,2 ...,s VFor the actual solutions of (62) equathn ©b8)

reads, in LOII]uIlCtl(Jn with (55), A
N

=G m=12, .. 39, (D)

\ \1 C(U (m)o,
t=1 =1
\.
where 8., is the Kronecker delta introduced 1{{ thc fingl paragraph of
7-4(a) above. Wo proceed to show that themultiplicrs MEAE L

ASY vanigh for all £ = 2,3, ... ,s To do this we must deduce the
result, for n = 1.2, ., ., 8 N
Z (T @) = 0 (68)
Jj=1 ,i ) .

from (62) and (67); we em\loy the method of complete induction.

Surely (68) holds,foy™n = 1, as we find by setting k=1 in (62)
(written with ¢ —\c‘ ’)? since then the sum over m in the right-hand
member is (,mpty‘ We now suppose that (68) holds for n =1,
2, . —Ax Multiplying the ¢th equation of (62) (with ¢; = “*’)
by C(m (n < A for all i =1, 2, ., 8, and adding the resulting s equa-
tions, wc\ obtain

A
E Z Piseifem — x(k)z Z sacPen = E A z 2 suce®.  (69)

=14 i 15=1

Because of (87} the coefficient of A® in (69) vanishes, sinee # < k. For
the same reasonsg, the only term in the sum over @ which does not vanish
15 the one for which m = n, and the coefficient of A is 4. Thus (69)
becomes, on slight rearrangement of the left-hand member and use of
the fact that Ti; = Ty,
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L 2

a £
3 ) &) PRED]
By = Z e E Tjei™ = A Z 2 Z 05:C;
i=1  i=1 Py B
s (70)
= A® Z ) ei™MePay,
i=15=1

with the aid of (68) (with indices ¢, j reversed), which is assumed valid
for n < k. Since n <k, (67) dietates that the final member of (70)
vanishes, so that we have A" = 0 for o = L2, ...,k—-1; t@t is,
every ferm of the right-hand member of (62)—with ¢; = c!¥must

vanish, and (68) holds also for n = k. A\
The required proof is complete: Assumption that (6\89 Holds for
n=12 ...,k — 1implies that (68) holds also for ni=1T. But (68)

is known %0 hold, as pointed out above, forn = 1; it gherefore holds also
forn = 2. Sinceit holdsforn = 1, 2, 1t must hold-3lss for » = 3, and—
by continuation of the same argument {the usuahatgument of ““complete
induction”)—for all n = 1, 2,...,s TheNdirect passage from (62)
to (63) in (c) above is hereby justified. S

S 3

7-7. Remarks on the Distinction betp{één Imposed and Free End-point
Conditions N

™

In the statement in 7-4(¢) ef%he minimum characterization of the
eigenvalue-eigenfunction prablem for the vibrating string, we note a
distinction between the ’twb types of end-point conditions which does
not appear in the chagaeterization of the problem through the differ-
ential equation (19,%f 7-3(¢). When one deals with the differential
equation, on theyol® hand, the cases in which the (fixed) end-point con-
dition ¢ = 0 applies are handled in much the same manner as those in
which the (fff:e) end-point condition ¢ = 0 applies. In the minimum
f:haracte;jiza 10m, on the other hand, we observe the following exceedingly
mmportant difference between the two cases:

) AJ’{ g)fixed end point we must require that every function ¢ cligible for
the\inimization must vanish at that end point. At a free end point,
howefrer, there is no special restriction which must be placed upon the
funcmo.ns ¢ eligible for the minimization; the vanishing of ¢’ at a free
end point arises ag g “natural” end-point condition which turns out to
be necessarily satisfied by the minimizing functions. That is, an eigen-
function in a fres end-point problem effects the minimization not merely
with respect to eligible functions which satisfy the end-point condition
9’ = 0 but with respect to eligible functions which satisfy arbitrary end-
point conditions. Ap eigenfunetion in g fixed end-point problem, how-
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ever, effects the minimization only with respect to the class of eligible
functions which satisfy the end-point condition ¢ = 0.

Although the foregoing remarks are of course redundant with respect
to 7-4(c), they appear for the sake of reemphasis and because the same
type of distinction plays a role of extreme importance in chapters follow-
ing—especiully in Chap. 9. We must keep clearly in mind the essential
difference between imposed boundary conditions and so-called nafural
boundary cenditions.

EXERCISES
. . . O\
1, Assuming the exislence of a surface 2 = 2(z,y) for which the arca enclosed by s
fixed gpace curve is a minirnum, show that L N\

i) - + a Zy o L W
i’x(\/l +2 +zi) ay(w/l +2 +z:) O

‘&
on the minimal surface. )

2. {a) Let v = ¢(x) be a curvein the zy plane. Show that (0¥ e) > 0implies that
the eurve i3 everywhere conver toward the z axis, and th.attiaf;” /#) < 0 implies it ja
everywhere concave toward the x axis. L4

{b} Use part {a) to show that ne function ¢ which Satisfies (19,1}—in which r > 0,
o{z) > 0—can {i) vanish for two distinet values ()f:$ if » £ 0, (i) bave a vanishing
derivative for two distinet values of ¢ if A < 0,.(ii)} vanish at one value of = while its
derivative vanishes at n second value if % = 0u) (Thus we have a geometric-intuitive
proof of the fact that there are no nega.ti\:e:ﬁbrating~st-ring eigenvalues.)

{¢) Let ¢ = ¢(z,\) be the solution of (10}} for which ¢(C,)) =0, ¢'{0,x) = 1, for
arbitrary A, It can be shown that &{sX) and &'(z,A) are continuous functions of A
Hine: Let ¢(z) = ¢(z,h + AN £ 3(z,n), so that ¢(0} =¢'(0) = 0. Show that
W = —Adeplzh + m\)\\ﬁssuming & to be known, use the method of vard-
ation of purameters to solve thi®equation for ¢, with the given conditions at £ = 0, and
80 show that y and ¢’ are Pfeportional to AN, _ _

With the knowledge of>this continuity develop a geometric-intuitive proof that
there exists a smallest‘}r;sitive value A of A for which ¢(L,\) = 0. Hivr: By part
®) above, ¢(L,00\>.0. As x increases continuously from zero, the eurvaturc of
¥ = ¢{m)), whith\§ concave toward the z axis, increases. For gufficiently large 3,
the curve muskeross the = axis at 2 = L.

(d) Extghd the method of part (c) to show that there exists an infinite unbounded
sequenbe of positive values Ay, Mg, Asy + . . Of A such that ¢(Z,2) = 0. The demon-
stration should be such as to make evident the fact that #{z,\.) vanishes (n — 1)
times in the open interval 0 < z < L, for all » =1, 2,3, . . . . (Thuswe have a
geometric-intnitive proof of the existence of an unbounded positive sequence 'of
elgenvalues associated with a vibrating string having both ends fixed, 'The restrie-
tion ¢’(2,0) = 1 is unessential; each function ${z}s) may be multiplied by any non-
2ero constant without altering the essence of the argument.) .

(e) Adapt the method of parts (c) and {d} to demonstrate the ?xmtence of the
eigenvalues agsociated with the string having (i) both ends free and (ii) one end'——sa,y
£ = 0—free and the othor fixed. Hint: In cach ease let ¢(z,)) be the solution of

(18,i) for which $(0,7) = 1, #'(0\) = 0, cte.
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In both cases the nth eigenfunction vanishes {(n — 1) times in the open intervy
0 <z <l

3. Let ¢{z) and ¢*(x) be two distinet solutions of (10,i) for the snwe vahie of X
Prove that the wronskian [2-8(2)]w = (¢*¢’ — @¢™*) 15 a constant.  ThinT: Use (19,1)
to prove (dw/dz) = 0.

Thus show that, if both ¢ and ¢*, or hoth ¢ and ¢*', vanish ut a single value of z,
the wronskian iz identically zero. (Since ¢ and ¢* are therefore linearly r.lepcndcnt,
we have here a proof that there corresponds only one lincarly independent vigenfune-
tion to each vibrating-string eigenvalue.)

4, Given the series expansion (29), use (28) to derive the purenthetic part of (29},
Hiwr: Multiply hoth sides of (20) by o¢m, form = 1,2, 3, . . . and intesrafNerm
by term from 2 = 0 to x = £, In the resulting right-hand member, auly the term
for which n = m is different from zero, ¢\

B. Use 4-1 and 4-2(b) to characterize the vibrating-string (:iga‘.n\-'uIu\l':if-igénhmction
problem ss an isoperimetric problem: The eigenfunctions extreteizd the integral

L | L
=7 A 't dz with respect to funections ¢ for which the ipl;e;:rnl g = [] ci? dz

has a preseribed valug; at fived end points the cligihle funcbtih).; miust vatish; at free
end points the eligible functions are arbitrary. ’

6. (@) Prove in three ways that » = 0 is an eigenvg{w} m (19,1) if and only if we
have ¢'(0) = ¢'(L) = 0: (i} Use (21). (ii) Use exgrdige 2 ahove. (i) Solve {19,i}
explicitly. Show that the corresponding eigenfunh'ti% nis ¢ = constunt,

(b} Hew must (22), snd accordingly (23), befnpdified in the event %, — 0? Hivr:
Solve (19,ii) with x = 0. e

{e} Rewrite (48) so that it applies to tl;n({ probletn of the string with hoth ends free.

7. Bhow that the sets of coefficients @5 B.. in {48) arc evaluated as

3

L N L
Ay = j; u%ﬁﬂéQ‘d@*, B, = —\}R_;L odmib(z,0)dx,

s\ J

(™
where the inifial shape m(:&l) and initial velocity distribution w{z,0) nre presoribed
arbitrarily.  Hrvr: Fonin, set ¢ = 0 in (48) ; then use (29). TFor B, use (48) to
from w(z,0}: then ude 29,

8. A vibrating js&"}ng is subjected to a nonconservative transverse foree per unit
length given by "the expression F {(z,£). (That is, an element of len gth ez at z experi-
ences the externally applied foree F(z f)da perpendicular to the z axis in the plane
of vibratio};l.)

{¢) Mse the extended Hamilton's principle of 6-7 to show thut the equation of
motiu?.df the string so influenced is derived by extremizing the integral

b L .
T ﬁ ﬁ] [5G - rw?) + Fulds i,
Thus derive the equation of motion

% &%
T T Tam TR,

a8 well as the cogdit&on (dw/ax) = 0 at a possible fres end point. (Weimposew =10
at & fixed end point from the outset.)
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(b} Fxtend the method of 7-5(¢) to show that the goneral solution of the problem

at hﬂ.-ﬂd 1B = ? Cm(r) (bw(x}‘ where
A

yaac b

Len 4 rem = ff‘pq:. dr  (m=123 - )

dgy A T fy O = LS e
and the h. and @, constifute the sets of eigenvalues and rorresponding nermalized
eigenfunctions associgled with the same string in the absence of the external force
digtribution.

9. Throughout this excreise we deal with the uniform vibrating string of density\
¢ = ay, & constanl.

{a) Show that the general solution of (19,1) s, for ¢ = e, , .\‘\
7NN ¢

_ o :
d = ' cos (\j% x) + D sin (‘\/? m): AT

where , D) are wrliteary constaots,  For the aniform string with ﬁgc»f‘\d‘\chds show that
¢ =0 and sin (vaogsr £} = 0. Thus show that the cigen¥albes are given by
do= (afri /L3, with the corresponding eigenfunetions qt{ =MDy sin (axze/L}, for
n=1,23 .... N

Show that the normatization (20) is satisfied if D, = N@QO_L for all .

What are the natural vibradion frequencies of thiba#form string with both ends
fived? AxsweR: (£/A,/2%) = (n/20Y /¥ /o0 »,

by List the ecigenvalues and corresponding,’I}Ermalized eigenfunctions for the
uniform string fixed at z = 0 and free at z = Jod Hine: Use (71). Show that ¢ =0
and cos (v ha,jr £} = 0. ™

~

{c) List the cigenvalucs and corresponding normalized cigenfunctions for the
wniform string free ol hoth z = 0, §\=’ L. ANSWER: Mapy = (nirir/L¥) for n =0,
L2y o= (i aul), tegiss A2 /e L cos (nax/LYforn = 1,2,3, . . ..

(@) Write down the general so ttion (48) explicitly for the string of part ().

0. (@) With & = A{z/L¥N— (z/L)] (& > 3) use the method of 7-6(a) to show
that the first eigenvalue g(th“e fixed-end uniform vibrating-string problem in which
v =g, & constant, satis(es the inequality a = [Fh(F + 102k + 3 /eul2h — 1)
(We note that the rgqtfement ¢(0) = o(L) = 0is fulfilled.) Hmvr: First show that
the condition (50)\¥ith ¢ = o4, demands that 4 = [(2k + 1}k + 1)k + 3)/enl];
then substitute in% {49).

{h) Bhow t-I\a:'Ljf'the “heat”” value for k in part (z) is the solution of

\m‘; - @k + 3)2% — 1)7 = 6
for which & ~ —namely, & = 1.04, approximately. That ig, verify that the upper
bound given for A, is & minimum when & = 1.04. Thus show that A £ 9.98 {r/eL*).
(Compare with the preeise value X, = wi(r/ooL%) derived in excreise 9(a).)

{c} With ¢ = A(z/L}* (k > 1) adapt the method of 7-6(a) to show that the first
elgenvalue of the uniform-string problem with the end &bz = 0 fixed and the end &t
% = L free sutisfics the inequality M & [rk*2k + 1) /eel?(2k — 1) (We note that
the single end-point requirement, ¢(0) = 0, is fulfilled.} Huvr: First use (50), with
¢ =aq, to derive 47 = [(2k 4 1)/aoL]; then use (49).

Show that the “best” choice is approximately & = 0.8, so that & = 2.8(r/oel).
{Compars with the precige value hy = {(r/4)(r/wol?) derived in exercise 9{5).)
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11, (a) With &; = (/L)1 — (/L)) (§ = 1,2) use the method of 7-8(c), with
¢ = 2, to approximate A; and g for the fixed-end uniform {0 = o0} string.  Answer;
A1 = (107/0ul?), Az = (42r/aol?). Compare with X, and A: derived in exercise 9(q).

(&) With &; = (z/L) (§ = 1,2) use the method of 7-68{c), with s = 2, to approxi-
mate h: and A for the uniform (¢ = oo string that has itz end 2t £ = 0 fixed and its
end at = L free. ANSWER: A1 = (2.40r/0ol?), Az = (8227 /0ol.). Compare with
A1 and Az derived in exercize 3(b).

(¢) With & = (z/L}~1 (j = 1,2,3) use the method of 7-6{¢}, with &+ = 3, to approxi-
mate X, Az A for the uniform {r = o) string with both ends free. Axswer:
A1 = =0, A = {12r/0,l?), Ay = (B0r/0oL¥), Compare with x» and »; derived in
exercise 9{c). A



CHAPTER 8

THE STURM-LIOUVILLE
EIGENVALUE-EIGENFUNCTION PROBLEM

In this chapfer we consider a slight generalization of the eigenvalue-
eigenfunction problem met in the theory of the vibrating string (Chap: &N
To achicve this generalization we appeal to no physical problem for‘a
starting point but, instcad, deal with a problem formulated in(p‘u?eiy
analytic terms. >

-
N
< 3

8-1. Isoperimetric Problem Leading to a Sturm-Liouyi&e" System

(¢) We consider the problem of extremizing the Qu;mtity
AN
[ = ﬂ (r¢’ — pdpt)de + am[qb(a;»)']N asld(®e)]* (1

with respect to continuously diﬂerentja;ﬁlé’ functions ¢(z) which satisfy

the normalization eondition o\

~ ¢

!:i’crt;bz de = 1. (2)
L)

. \.. e - -
The given functions r(a:)@hi o(x) are continuous positive funetions, with
r(z) continuously diffq’féntiable ing €z 2wy p(z)is given as continu-
ous in the interval, \The given constants &1 and a; are nonnegative.

In onc asp ot~0f the problem no conditions are imposed upon the
eligible functions ¢ at the given end points @1 and ©2; We call this the
“free-end-goint problem.” Ina second aspect we require thaf the eligi-
ble funcions ¢ vanish at one (the “free-fixed problem”) or both (the
“fixedsphd-point problem”) end points. (If # = #; isa fixed end point,
the term involving a; in (1) does not appear for j = 1,2, or both.)

(5) To facilitate bringing the problem of (@) above within the scope of
the isoperimetric problem considered in 4-1 and 4.2(b) we introduce the
continuously differentiable function & = a{x) which is arbitrary to within
the limitations a(z)) = —aqand a(@2) = G2 We may thus rewrite (1) as

] = f ‘[rdﬂ — ud* + % (a&)] dz. (3)
- 119
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Using the method of 4-1, we form, from the integrands of (3) and (23,
the funetion
d o
o= rg’t — ugp® 7 {ad®) — Aaop®, (4)

where —N\ is an undetevmined multiplier.  Substitution of (1) inte (14)
of 4-1(b), with ¥ replaced by ¢, provides'

. _
éuwy+m+mm:ﬂ (5)

a¢ the differential equation which must be satisfied by any exiréihizing
function for the problem of (a}. A

in the free-end-point problem, substitution of (4) wto th;}ﬁﬁeral free
end-point condilion (18) of 4-2(h) yieldx the result 7 ad = 0 at

T = 21, & = 29, 0t—since by definition «(v) = —ay, ;gi:é;‘} =y
) P (@) — Gl = BN ©)
(it) 7o' () + @rp(ar) = Oy

N

Ked-end-point preblem we

&=

where we write v(y) = 71, (%s) = 7o ln\'{x"
replace (6), of course, by the conditions )

@) d(x) = 0, M) @) = 0. ")

In a fres-fixed problem one cqndjftjion from cach of (6) and (71— (i) from
one, (i} from the other—ggyplibé.

Rquation (3), with thé\functions ¢, o, p given, is called the Sturne-
Liowville differential eguttion. This equation, togetber with an appro-
priate set of end-pdint conditions from among (G} and (7), constitutes &
Sturm- ouville ggtém.  Such a system is linear and homogeneous: If any
function ¢ s&ﬁi&ﬁes the system, 5o also does the function L¢. where & 18
an arbifraxy™constant. Since «(z) > 0 for 2 S ¢ £ T, any Sturms
Lil)ﬂ"ﬂl’ﬁ\cﬁ (not identically zero) may therefore he supposed, when
necggf%ary, to satisfy the normalization condition (2). The solution of a
,S’r\.-uj’m-Liouﬁlle system is an eigenvalue-cigenfunction problem, of which

\the main problem encountered in Chap. 7 is a special case. (In’ Chap. T
we suppose oy = a4, = 0, p{x) = 0, v = constant.) The eigenvalues
are those values of ) for each of which (5) has & solution that meets the

specific e.nd-point conditions of the problem; the corresponding solutions
are the eigenfunctions,

VIt follows from the result of 3-4(c) that the term (d/dz)(a¢?) in (#) has no influence
upon the Fuler-Lagrange oquation penerated upon 5. (We may, of sonrmse, vertly

this fact by direet substitution into {14) of 2-1¢p).} Thue the specifie character of alx)
plays no role here,
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It can be shown?! that the eigenvalues constitute a discrete unbounded
get hg < A < v A with one and enly one? linearly inde-
pendent eigenfunction corresponding to each. The expansion theorem
of T-4(b) applies to the Sturm-Liouville eigenfunctions with no alteration
other than replucing 0 £ v S Lby o £ 2 = % From this theorem we
may develop a minimum characterization of the Sturm-Licuville eigen-
valuc-eigenfunction problem analogous to the characterization given In
7-4{¢) for the vihrating-string problem (sec exercisc 5 at the end of this
chapter). Proofs of the orthogonality of the Sturm-Liouville eigenfune-
rions arc veserved for end-chapter exercises 2 and 3. ~

N

8-2. Transformation of a Sturm-Licuville System o
(a) T'or variods purposes it is often necessary to effect a charig?a in the
form exhibiled by a differential eguation. According to sthat sort of
change is required, it may be accomplished by change; of*independent
varigble, change of dependent variable, or both, or mél?e\y by multiply-
ing the equation by a suitable factor. As an cxample of the latfer case
we demonstrate the possibility of writing any lidgar homogeneous equa-
ton of second order in the so-called self-adjoidd form —namely, in the form

d ; 8 \Y =" 5
% () + o= 0 5

—through multiplication by a syitable factor.
We consider the given equation

P (@) HF g@)¢’ + h@)é = 0, ®

which we multiply by.\’t-he' function s = s(z), at this point undetermined.
Comparizon with & e expanded form of (8) reveals that (9) becomes seli-
adjoint if and qn{y. if (d/dx)(sp) = s, whenee (s'/s) = (¢/p) — (p'/p)-
Integrating, ye ohtain directly
N q
& N 10)
r

\ W

and 50 conclude that (9) becomes the self-adjoint cquation
G (spe!) + she = 0,

whieve & is given by (10). (We note that the Sturm-Liouville equation (5)
possosses the self-adjoint form. See end-chapter exercise 1.)

t See Tnee, Chap. 10, and also exercige 6 at the end of this chapter.
® Hop enil-chapter exercise 4 for a proof of the nondegenericy.
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() The transformation of a given differential equation through
change of independent variahle, a change of dependent variable, or hoth,
may be effected, of course, through direct substitution.  Quite often the
relationships expressed in the transformation equations are not com-
pletely known but remain to be determined in a fashion designed to bring
the differential equation into a particular destred form. In the case of
the Sturm-Liouville equation (5), or any other equation of the form (8),
a great simplification in the determination of the required travsformation
relationships is achieved through ecarrying out all changes of variable in
the integral whose extremization leads to the differential cquatiops The
simplification lies in the fact that, while the differential equation‘involves
the second derivative, the integrand function involves aplyythe first
derivative of the dependent variable. Moreover, any 1-;‘;u:1?sf<)1'mation of
end-point conditions arising from a change of vanablésiiay he effected
simultaneously with the change of form of the differénpial equation if the
integral, rather than the differential equation itsélf,’ serves as target for
the substitutions. \

Acecording to (4) of 8-1(h) the intepral ’\'\‘h}isc extremizafivon leads to
the Sturm-Liouville system representedipyN5) and (6) is

1

T = f [rqs’“ -— (u.‘-'f-:")\c;)(ﬁ‘"’ + .d% (aqbﬂ] dx, (1)

where a(z1) = —ai, a(zs) = a8 We note in passing that the end-point
conditions (6) are cxpressed\in terms of the function a{a)—urhitrary to
within differentiability and the assigned end-point values—as

f(x)é’\?;i(x)¢ =0 atx =, =z (12)

The most genebal type of transformation we seek to effect here involves
the change of Jindependent variable # = x(2), with 2z the new independent
variable,ﬁa,‘nd‘ the simultaneous change of dependent variable

O ¢ = u(zu(z), (13)
m\t@w the new dependent varizble; the role of u(z) is discussed in the
waragraph following. The change z = (z) is restricted to functions x(z)
whose derivative with respect to z—denoted by #(2)—is strictly positive,
80 that z is a single-valued fumection of z. Further, wo make the eon-
venient, although unessential, requirement that the change of independ-
ent X.Iariable be such that 2, = 2(0) and z, = (). Thus, as z increases
C?ntlﬂmﬂﬂy from 0 to x, » increases continuously from x, to s and
vice versa.

In the change of dependent variable {13) from ¢ to w the function wlz)

plays the role of a tool, as does the Funetion x(z), in our quest for any
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given new form of the Sturm-Liouville system. We make the restriction
ufz) > 0 for 0 <z < x. One consequence of this requirement, accord-
ing t0 (13), is that the vanishing of w(z) for a particular value of zin
0522w is cquivalent to the vanishing of ¢(x) for the corresponding
value of  in 21 £ & S 22; the total number of zeros (vanishing points)
possessed by w(z) in 0 £z =~ equals the total number of zeros pos-
sessed by ofx) in 2 S & = 2.

Using the supcrior dot to indicate differentiation with respect to 2,
we obtain, according to (13}, ¢ = (§/F) = [(wb + ww) /%], Substifuting
this result, with (13), ¢ = z(2), and dz = # dz, into (11}, we obiain

- 5 o - _
= f [Tf'f— it 4+ 2 4 ["i, — sut(p + )w)] w ¢O)
0 T w T £\ o
-} T (ou w.). dz, (14
s
after o slight regrouping of terms. In order to evolved14yinto the same
form as (11) we employ the identity Y,
QTEE . IE [ - d TUY ap? _\_";;;._@. (3‘__‘1& .
St =g \Te VO e\
with this, (14} becomes .;f’j"

~ 3

poo [T e w8 () ]
L {;i‘. 2 [u dz(ﬁ, ‘:{; dud(p + M) | W

XY ]
P \ + %[(twﬁ + -7—?) 'wQ]l dz. (15

With the definition8®

‘ O y a (o | .
(1) ’T&'Q\= 7-1;"—: (11) M(Z) = U a—z'(%) -+ Tuty, (16)
i)y O S@) =, (V) Al) = et T—%’"f
equation (15) becomes
I* = f ) [Tws _ (M A8t %mwﬂ)] e, (17
Q

Accordingly, the Sturm-Licuville

which, in form, is identical with (11). _ :
£ (17) may be written down lmme-

system required for the extremization o

't is assumed that u, o, 7 are all expressed in terms of 2 through = = =(2).
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diately by inserting the appropriate changes of numcnvhinre inde (5) of
&-1(b} and (12):

%(Tﬁ:’) 4 (M 4+ 28w = (18)
Tw 4+ Aw =0 al z = 00— (1%

(In a fixed-end-point problem the funetions et A phay o role what-
ever. Because of {13) and u(z) > 0 the condinons @Gy — dlay) =0

autornatically become the conditions wil)) == wiw! . I merely one
of the conditions ¢(xy) = 0 or ¢{xz} = 0 is imposed he Tree-fixed prob-
lem), we are concerned with the specific values a(ra) ~ aand S L Mif the
former is requived, with a(2:) = —«; und () if the l vler i (Mt nired.)

Explicit justification for the above method of tr asToring () into
(18Y, and (12) into (19)-—namely, proof that the b ma{ulnml integrand
function leads to the same differential m;u,mnn .md mu{ pmm rondinions
we should achicve on direct substitution of » —»N V.o — ot nto (D)
and (12)—is reserved for (¢) below. There follgwelirectly specific exam-
ples of the above transformations. \.

(¢} It 1s of some importance! to obtain th("thmafmnwd Sturm-Liouville
equation (1R) in the special farm in Ahich 7" = 1 and 5 - K® where
K is some conveniently chosen positiye constant.  Aceording to 16,3,11}
the desired transformation may, e effected through the simultaneous
satisfaction of (ru?/s) = 1 and}hﬁr%?c = K7 from which follow

_ VK \ _
= HY \' Ix fm ,\[da, K = f \szh (20}

sin(-,t_a.:.f: = (dz/d:a)i:x‘(ﬁj = 1, and x(x) =
With the tyansformation (20) the Sturm-Liouville equation {3) reads,
through (1&2\.8:1"1(1 {183,

A\ @
Py VK @z ) )
o) - R —l—K?\ w = 0. (21)

\lhe relation between the old and the new depondent variable is, avcord-
ing to (13} and the first of (20}, ¢ = [\/K/(ovithw. {We arc noi eon-
cerned here with the transformed end-point conditions (19, atthough
explicit representation is veadily achieved through (20).)

A tacit special requirement for the transformation fo (21} is clearly the
differentiability of the product er. .

* See Ince, pp. 270-273, for example.
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(d) Discussion of the properties of a Sturm-Licuville gystern—in par-
tiewlar, proof of the existence of an infinitc unbounded sequence of eigen-
values of A—1s greatly simplificd’ if we deal with a transforimed system
in which 7' = 1 and A(0) = A(r) = 0. The latter condition is ensured
by requiring A(z) = O identically in 0 = z < x.  According to (16,i,iv)
we may offect the desired trunsformation by setting

T g 4 THE _ )

< 1, an? + = 0, (22)

from which it Follows directly that (u/u?) +a =0, or O
.\:\’

4 = (Zj L‘L(fz)ﬂ: and [ QF_E = %j (j a.dz)
1 G

—1

a4 (33)
since & = (dx/dz) and 2(0) = 2v D

We note that the function a(z) which appears in (22)'"@3‘&"1 (23) is arbi-
trary, except in 5o far as it is continuously differentiable and fulfills the
end-point conditions a(z) = —ay, a(xs) = @z, WHEI®'a: and a: are given
nonnegative constants. Since z = 0 when 5 o1, and z =7 Wwhen
% = &y, the end-point restrictions may be dxpressed as ¢ = —@ when
z=10,and a = g; whenz = =. The simplest—but by no means unique
—form of @ as a function of 2 whiclj.'éa;ﬁisﬁes these requirements is the

) §

linear funciion N
g = 81;{4"2:(2 - 4 as2]; (24)

4 \’0' .
e e the representat-ii;mb 4) in all that follows. Thus we have the
indefinite integral <"

»

f ads = -2[:_ la\\(r{\— e+ e’ + ¢

A\ _ e awm Y@ o (25
N - i (Z ey + a--z) b2+ t2) T (26)

N
\/
where\bhé constant of integration ¢! is chosen in such faghion that 2 = 2=
ecorresponds with z = = in the second of (23). We have, namely,

-/ dr _ f R (26)
T ay + o amm \ laT
z1 a —-—-'W—"_(Z_——"—'—> +—“_'_arl+a|2+20

G1+ﬂu2

according to (23), (25), and 2(r) = Z=.

! A rigorous existence proof is fornd in Ince, Chap. 10. Sen also exercize 6 at the

end of this ehapter.
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That there exists a constant € which satisfies the relation (26} is clear
trom the following considerations: Since 7(x) > 0 and &1 < &, the left-
hand member of (26} is positive. By taking ' sufficiently large, the
vight-hand member can be made arbitrarily elose to zeru. By taking ¢
sufficiently close to, but greater than [ ~aawr/2(a; + a.)), the right-hand
member of (26) can be made arbitrarily large. Since the vighi-hand mem-
ber is a positive continuous function of €' for € > | —wtor 2(a1 + as)),
it therefore follows that there exists a value of C for which (20) is satisfed.
{We note that the required value of € renders (25) positive- u condition
made necessary by the first relation of (23).) \

In any specific problem the value of ¢ may he campured tum (26)
through some procedure of numerieal approximation and » pry be deter-
mined as a function of z, or vice versa, from the second :31'.:{‘;"‘3), For our
present purpose it is sufficient merely to demonstratesthe ¢xistence of a
transformation of the type introduced in (h) ahovgmffs}ﬁ which the trans-
formed differential equation (18) reads ’

d*w \\
o T+ Mw 5. (27)

with the transformed end-point conditions (19) reading

(0) =3(r) = 0. (28)

(¢) We provide here the prliéit- justification—called for in the final
paragraph of (b) above—'g)f:the transformation method developed in (b}
and exemplified in {¢) &Qd'(d). Into the integral

@7 1= [ e (29)

we introduqe tﬁe"cha,nges of variable # = 2(2) snd ¢ = ww having the
characterig?{{cs' of the transformations descrihed in (). Thus since
e = E£de % = [{ub + aw) /2], 1, = z{0), and z: = w{x), the integral

(29) beeomes

Vo v o, .
[ = L 1 (z(z);uw:w):'vdz =f a*(z,w,w)dz, (30)
L]

where g¥ = f*3,
I

To construct the Buler-Lagrange equation required for the extremi-

zation of (30) we employ the relations ¢ = we, ¢ = [(ui + )/ @] to
form the derivatives

ag* _ a(f*z) a¢ a(f*z) a¢’ af* of* u
_— PP Y - l
duw ¢ dw 3 odw " (E\E u -+ ¢’ Z) ey
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and
d fog*\ _ . d|an)ae’| _ . 4 (of
dz(aw _xﬁ[ a5 ou |~ “d\as Y/ (32)
Since (#/%) = (du/dx), we have directly from (31) and (32) that
ag* _d (3" _ g for _ (o
5o & (“a;) = “’”[a¢ a(&y : 33)

Because, as required, ¢u # 0in ¢ S z £ 7, it follows that the vanishing
of the left-hand member of (33)—satisfaction of the Euler-Lagrange oquas
tion associated with the transformed integral (30)—is a concomitant\bt
the vanishing of the bracketed portion of the right-hand member—&atis-
faction of the Euler-Lagrange equation associated with the origifial inte-
gral (29). A\
Moreover, since (3g*/dw) = u(df*/d¢’), the transformating of the end-
point conditions is correctly carried out through the integ}ajl substitution.
For in the free-end-point problem we obtain (af*/apIN=E O at £ = 24, 22
a5 necossary for the extremization of (29), (6g*j[8@}’= Oatz=0 ras
necessary for the extremization of (30). (ln-the fixed-end-point prob-
lem the question of transformation of the efid=point conditions does not
arise. } \+

8-3. Two Singular Cases: Laguerze Polynomials, Bessel Functions

{(a} In 8-i(e) requirements are’set forth concerning the functions 7(z),
#(z), olx) which appear in g~given Sturm-Liouville equation. In par-
ficular we have r{z) > 0} {2 continuous {and therefore bounded) and
o{x) > 0 in the closed interval of definition 21 < 3 £ z;. Moreover, the
end points z, and zyafe assumed to be finite. In this section we treat
two cases, of use jm>ehapters following, in which not all of these condi-
tions are mets §Ugh cases are characterized as singular. We deal here
with extremum f)roblems whose solutions lead respectively to the well-
known La,g‘ﬁerre polynomials and Bessel functions, Since these are
treatgd\fa&equately in the literature, many of the results concerning
them Bre stated below without proof. It ig our main purpose merely to
demonstrate the possibility of defining these functions within the frame-
work of the ealeulus of variations.

In the singular cases considered, 7(x) vanishes at one or both end points.
Since we choose the function a(x), introduced in 8-1(b), to be zero at such
end points, the applicable end-poini condition (8) reads v¢' = 0. It
would therefore appear, at first glance, that the end-point vanishing of 7
automatically effects the satisfaction of this condition for all values of

* Bee, for example, Jackson.
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the parameter .. It happens, however, that the vanishing of 7 for a par-
ticular value of 2 introduces a singularity into the Sturm-Liouville differ-
ential equation, so that we cannot be certain e prior: that a solution ¢(z),
or its derivative ¢'(x), is bounded at that value of . It becomes expedi-
ent, therefore, to rewrite the end-point condition 74" = Oui.c =z and/or
T = T 48
lim {r¢') =0 and /or lim (re¢’} = (. {34)
T—rTL r—rg

The eigenvalues are those values of A for which solutions of the differ-
ential equation exist satislying one or hoth of (34) ax required, wivwell as
any other independent end-point condition which is applicad{oy

It happens that conditions of the type (34) are equivaledthtin the cases
we consider below, to (i) the requirement that 1-]1{1.,s\.{gv.}]1"1111(ft:.i0ns be
bounded in the interval of definition, and {ii) the 'jr;'.qliirumvnt of the
existence of the integral whose extremization lcﬂuﬂ\ to (he differential
equation. Requirement (i) is crucial in the prdblems of Lhe ecircular
membrane (exereise 13, Chap. 9) and the 'Q.ix;(rulur plate fexereize 29,
Chap. 10), for example; requirement (il4nds its greatest siguificance in
the study of quantum mechanics (C-hap: ﬂ).

(b) We consider the singular Sturm-Liouville system defined by

T = ﬁ’H"le_I, p=4¢ o= Ik(%_?t*,::' 1y = fdy = 0, =0, 1=+,

where & > —~1. The integpal whose extremization leads to the system is

"‘\ et
’H;’f koo {d’® — WDl 35
I\\ o T {xo hphd, (35
The corresponding :Euler-Lagra.nge equation (5) reads. on division by
xtgma, A/

LT w1 - 0)¢ 1 he = 0 (36)
the endepdint condition (34) at &z — o is

AN fim (++ie-2g’) = 9. (87)

/N
. Y . Ea s

Equation (36) has a solution for which (37) holds if and ondy if A =17
(n =0,1,2, . . ) this solution {unnormalized) is

- g o faTtde
$n = LP () = i g () (k> —1:n =012 .... (88

The function L%(x} is elearly a polynomial—the l.aguerre polynomial
of degree n (with upper index k). It is obvious that (38) satisfles the

L ank it 1 H - sy
Bome anthors omit the #lin the denominator of (38) in the definition of L%,
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left-hand end-point condition of (34)—namely, lim (z*+le~*¢’) = 0—
z—0

since & > —L.
(¢) We consider the singular Sturm-Liouville system in which

v

T =T, = — — F =i, aq:{}, [127) 0, (U]_:OJ 372)0,

where 7 is a given nonnegative constant., 'The integral whose extremiza-

tion leads to this system is ~

. e [ , 2 d , .
fEa. ﬁ [a:qb 4+ (% — M,) b+ Tz (a¢z)} dx, ..\o\,('SQ}

where a{0) = 0, a{zz) = a,. We effect the change of indepef:&gnt vari-

able z = A/ x, whence (39) becomes 0
I - LISV o (P 2 4 ﬁ_( (;5.2)1 dz (40)
= . 20" T p, z) o dz::& ;

the superior dot indicates differentiation with\¥¢spect to 2. T'he extremi-
zation of {40) leads to the Bessel differential efjuation

o S 3
N

@ ’d_qﬁ g o2 AN, < 4 <
S R Gl )(,3,:7 0 (022 = 2V (41)

For given n, the Bessel cquati@m{41) has only one linearly independent
solution which satisfies th\{éff-hand end-point condition lim (2¢) = 0;

z=+l)

this solution, the 'f'Lt-h-QI‘djgl' Besgel function of the first kind, is given by
the infinite series A&/

D “ .

Z“\:h _ R AT (%z)ﬂ‘r% ; 42
.\.\\WJTL(Z) = E ( 1) k‘.F(ﬂ, FE+ 1) ( )
m:; k=0
(:011»'erge«di,\.~‘.foor all 2. (If n is integral, T(n + 4+ 1) = (0 + £)1; in
generaly/

I'n+4h+1) = j‘;w {nhgt dd.)
The applicable {unnormalized) solution of (41) i, accordingly,
¢ = Ju@) = Ja(x/2 2.

The eigenvalues of A are determined through applic_at-ion'_of (6,ii) of
8-1(b)—namely, zs¢’ (z2) + aad(x2) = 0, or, since ¢ = Jaln/N &),

2o /K TV o) + anlu(v/ A ) = 0. ©(43)
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The equation (43) has an infinite unbounded sequence of positive solu-

Hons A=Ay Ay - - o g Rmp -0 which constitute the eigenvalues of
the problem. In the important special case Gy = 0, hn = (J./22)? for
m=1,238,...,wherej,, is the mth positive zero of J7(z).

1f, however, we impose upon the functions ¢ eligible for the extremiza-
tion of (39) the condition ¢{zz) = 0, the relation (43) is clearly replaced
oy Ja(v/X @) = 0 as the equation from which the scquence of eigen-
values of A is determined. In this problem the eigenvalues arc given by
M = (jum/22)?, WheTe fum 1 the mth positive zero of J.(2). ~

EXERCISES )

28N

1. Bhow that the Euler-Lagrange equation derived from any integriiml of the form

: d
= q@e + 2@)ee’ + pla)e + (5900

is self-adjoint. NN

2, When f*is given by (4) of 8-1(}, the relation (12) ohd\INb), with y replaced by ¢,
holds for arbitrary differentiable »; if ¢ is a Sturm-Liouyiile eigenfunction and A the
corresponding eigenvalue, Let ¢; and ¢ be eigenf n‘ct}ons of n given Sturm-Liouville
system which correspond to the distinet eigenvglfieg™s; and M. With f* given by (4)
of §-1(b), write down {12) of £-1{b) fwico—ohes with & = ¢, A = A, 7; = o and
then with & = ¢, N =X, m = ¢ Cohjdﬁne the two results to prove the
orthogonality oy

|\

fx Temialds =0 (k). {44}

{Give explicit justification for these substitutions, particularly in the fixed-end case in
which »; is required to vapighat one or both end pointa.)

3. {a) Lot ¢:, éi, hipde e the same meanings as in exercise 2.  Use the Sturm-
Liouville differential egu:a:tion to prove that

.\ ¢ ' ro |®E %2
) \'j[r(q&sqbk - ¢k¢,-}]m = {n — M)L cdubr du. (45)

Hint; Compare derivation of (26) of 7-4{a).

(b} Use\45) to prove (44) for all permissible combinations of the end-point condi-
tions .@).’and {7
4 \Prove the nondegeneracy of the Sturm-Liouville eigenvalnes-—that there exists
only one linearly independent eigenfunction to each eigenvalue, that iz, HiNt:
Compare exercize 3, Chap. 7, but show that rw = constant = zero.

5. In the manner of 7-4{c) develop a minimum charanterization of the Sturm-
Liouville eigenvalue-cigenfunetion problem. Bage the developwent upon the expan-
gion theorem—valid alee for Sturm-Liouville eigenfunctions, with 0 < z £ L replaced
by 1 = & & ay—of T-4(h).

8. (¢) By means of the transformed Sturm-Liouville system (27}, (28) of 8-2(d) and
through suitable adaptation of the method of exercise 2, Chap. 7, give & geometric-
ix}tuitive proof of the existence of an infinite unbounded sequence of Sturm-Liouville
falggn;aluej Tn particular show that A, is greater than minus the maximam of (M/5)
in =2z )

(b} Give the existenee proof also for the fixed- and free-fixed end-point problems.
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7. {a) Use the method of 8-2{a) to obtain the sel-adjoint forms of the equations

) &g’ + a8’ + h(@)g = 0,
) x¢” -+ (b — )¢’ + ¢ =0.

() Write down the integral whose extremization leads to the (Hermite) differential
equation
& — 220" - hp =0 {(—w £225 w). {48)

8. (@) Without change of independent variable use the method of 8-2(b) {o rewrite
the equation (i) of exercise 7(a} in the form w” + gl{z)w = 0, where ¢ = uw. (Give
w and gz} explicitly, the latter in terms of h(z).) Hinr: Note that & = 1, and use
(16,15i1). |

() Work out the details of the transformation of 8-2(¢) as applied to the {Legendre)

gquation ¢\
4 AN
Lig—me)+re=0 (-1sesn. |V wn
ANSWER! N
dhp 1 2 = O
dzs+[4(1+csc 5 +r]w=0, ) (48)

where z = — cos z, w = ¢ +/sin 2. Nore: The bouqde\ddness of u iz violated at
2 =0, {z = £1); this eircumstance ariges because of it}m singular econdition r = 0
forz = +1. Thesingular character of (47) is carried’o}er intto (48} as the unbounded-
ness of the fupetion M {z). O\

8. Show that the orthonormality relationships—{44} plus the normslization (2)—is
carried over directly into N

- oW
L Swi‘wk’;&z = G

by the gencral transformation of 842(b).

10. (2} Tist the eigenvaluegiand corresponding eigenfunctions of the system
" + hg =0, (1) = {2} o, Hint: Use (161 to iii) to find a simplifying
trapsformation, NoTe: f:‘=31 here, not #'. ANSWER! A = dain?,

¢ 3
N 4. = 2rsin 2enle ~ 1)/al,
forn =1,2,3, . ‘:\

(b) Show tha.’b\the equation
O\
e )
can alwayy be transformed into i + AK2w = 0 if ro[f(1/r)dz]* = constant.

d . =
5 0¢) +rae =0



CHAPTER ¢

SEVERAL INDEPENDENT VARIABLES:
THE VIBRATING MEMBRANE

9-1, Extremization of a Multiple Integral ~
(2) We fix our attention on the triple integral® O
NS °
I = ff F, gz, wewyw0,)de dy de "
3 N

carried out over a definite region R of wyz spacc.,w}%c-. inteerand fone-
tion f, supposed given explicitly as a function ofthé argnments indicated,
is continuously twice differentiable with lewbwl to any comhination of
thern. The problem before us is to find ’bhb differential ecqnation that
must be satisfied by the function w = ¥ y,2) which renders J un extre-
mum with respect fo twice- dlﬁerentlablf\ funetions which assume pre-
acribed values at all points of thevBDUndaﬂ gurface B of the region A.°
To effect the e}\tremlzation‘of,(l) we employ the technique of 3-3(6)
and 7-1: We introduce & oge-;ié.mmeter family of comparison funetions
Wiz,y,2) as ~\
= wizy,s) + enleye), @)

where it is assum&d that wiz,y,z) is the actual extremizing function and

¢ is the parametelof the family, Thus no matter what the choice of the

funetion ‘4(32,{:{}3) —arbitrary to within continuous differentiability and
O ley,z) =0 on B 3

al
\$

th extremizing function w is a member of each comparizon family for
‘Qle* parameter value e = 0. The condition {3) ensures that every com-

parison function assumes the same set of values on the boundary sur-
face B.

In (1) we replace w by W—with

7 o= ap 4 - ,
4! e = Wy + €1z, JL: y = 0y ~+ €1y, T . = W, + €., (4}
! In this chapter, asin 7, we often employ subseripts to indieate partinl derivatives—
w, for (dw/dx), ele,

2 133 1
We use “extremum’ here in the sense of 3-3(e), with obwicnz cxtension to the
cage of funetions of several variables,

132
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aceording to {2)—and so form

10 = [[[ o2, W W7, Wde dy d. (5)
J |

Since, for all permissible choiecs of 7, e = 0 implies that I reduces to
the actual extremizing function, we have that / {0) Is the exiremum

sought, or
oy = o (6

We differentiate (5) with respect to e, using (2) and (4) to obtaim
(W /de) =, (9W:/0e) = n, €C.] WO set € = 0, whereby W, W,, ebe
become i, 1y, cte.; and finally we use (6) to achieve (\)

7'\
N

fff(f—fn + ot Lt %ns)dxdydz <o
R .m.'\\
Applying Green's theorem (29) of 2-14 to the final three terms of (7)
we get, since n = 0 on B, \\

R
af o f of g af \ i of , _
(12 - 2(2) - 360) S5l e =0

I &NY

Since (81 holds for arbitrary » vsg,zﬁ?ﬂing on B, we use the basic lemma

of 3-1{c}, as extended to triple ,i‘nte’g'rals, to conclude that

&
of _ o (aJ~ i(_a_f) _ i(gf_‘_) -0 9
gw dr (a—w%? dy \dw, 9z \dw, ' ©)
This we call the Ey.sé)'c.-ffag?-ange differential equation generated upon the
integrand f of (1))
(b) A g(eneqakizafion of (§) comes from considering an n-ftuple integral
OVer g ﬁxeglq‘eéion of an n-dimensional space. If the integrand funciion

i = fEae. . . 2wty - . . Ws), The function w of the n independ-
ent W{ﬂébfes z, Y, . .. e which extremizes the integral in question must

satisfythe Touler-Lagrange equation

o oo ,2_(_@:), - _i(ili)=o. (10)
dw Bz \Ow, dy \duy 82 \dw,
The derivation of (10) may be accomplished either by a generalization of
Greew’s theorem to n dimensions, or by the method called for in exercise 1
at the end of this chapter.

{¢) Extension of the above resulis to isoperimetric problems is a(.:hieved
in the manner of 4-1 and 7-1{c): T{ w isa function which extremizes (1)
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with respect to functions which satisfy the subsidiary conditions

];f gz wapw)de dy de = G (5 =12, . . . 43),

where (4, Cs, . . . , C. are constants, then w satisfies the Euler-Lagrange

equation
af* af* (af*) (af*) —
w 6‘x ow,/ oy \ow,) 9z \ouw. ‘

where N\
f* = f - }\191 - )\292 - vt = )\ag:- A {11)

The constants Ay Az . - - , As are undetermined Lagrang- {r?t'ii\Lipliels
If » independent vanables are involved, sothat we deal with.¥-tuple inte-
grals, we arve led to (109, with f replaced by f*, given, ‘b) (11).

(@) It follows from Green's theorem (28) of 2- 14J§bat if P, Q, B arc
three arbitrary continuously differentiable functlons of z, ¥, z, w and if

s=¥, 9% (2

the integral I, given by (1), depends, only on the values assumed by P,
9, R on the boundary surface B. Since w is supposed prescribed on B,
it follows that I achieves the same value for all permissible choices of w
and the extremization problem 1¥ meaningiess. We now show, in fact,

that the Euler-Lagrange equ@tlon {9) reduces to an identity in case (12)
holds.

We rewrite (12) thro\a1 the relations
=P, +\P§, . aQ

where P, ré\pfesents the derivative of P with respect to  when y, z, and
w are helgl constant—and similarly for P, P,—while {8P/0x) is meant to
take dnto account the fact that P varies with « by dint of the fact that
mafm}s with z, as well as through the explicit dependence of P on 13—
and similarly for (3Q/dy), (¢R/d2).r With (13), (12) becomes

f=P$+Qy+Rz+wa:+way+wa:;

ar

= Oy + way, T2

= R, + Row,, (18}

t At best, any notation for a partial derivative is inadequate whon it is not clear
what is being held constant during the process of differentiation. Here (2P/02)
implics merely that ¥ and z are held constant, while P; calls for helding constant # %
and w during the differentiation. The reader unfamilisr with such distinctions may
be straightened out by the following example: If P = z%zud, wo have, aceording to the
notation adopted here, P, = 2zyze0?, while (0P /ox) = 2zyzuw® + 3xlyzieduw,.
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and we have

a
f = P, + Quw + R:ew + wawz + wa’wy + wawn (14)

and sinee (8f/ow,) = P

afea
a (61':::) = Pw:c + wawa:; (]_5)
which is analogous to the first of (13) with P replaced by P,. With (149,
(13}, and corresponding expressions with (P,x) replaced by (@, j) agd
then by (I2,2), it is directly noted that (9) reduces to an 1dent1tyf‘ Since
P:ﬂl = Pu_r, etoe.

An immediate corollary of the above result is the fact th&t we may
add any expression of the form (12)—-a so-called ° dwergenee” éxpression
—+to the integrand f of (1) without altering the Euler~L&§~range equation
{9) generated upon f. This follows because every ¥erm of (9} depends

upon f linearly. W
\ 4
9-2. Change of Independent Variables. Transformatlon of the Lapla-
cian AN

It 15 clear from the form of f in ('l')[:’that (9) is in general a partial
differential equation of second orflér-—a relationship, that is, which
involves derivatives of the unksgwn w no higher than the second. We
usually arrive at such a diﬁ'ei'(e\rltial equation with =, ¥, # representing
eartesian (rectangular) coordinates, but the geometrical configuration of
the problem at hand quife)eften happens to be better suited to some other
coordinate system. NP6t example, if the region E in which the Fuler-
Lagrange equationiy” to be solved is bounded by a sphere, or by con-
centric spheres §pherical coordinates are the most suitable, ete.

Although i#(3s" possible—often with a tremendous amount of tedious
Bc'mpubatwn—_to transform the Euler-Lagrange equation from cartesian
coordi mtes t0 some other coordinate system by direct substitution in the
d}f’feregtlal equation itself, we have in the technique of the ealculus of
variations s means for significantly reducing the amount of labor required
to effect the transformation. The method we derive directly below is
analogous to the technique employed in 8-2 for altering the form of the
Sturm-Liouville differential equation. The advantage of this method
lies in the fact that we need go no further than the transformation of
Jirst partial derivatives: direct transformation of the differential equation,
ou the other hand, entails the much more complicated computations of
transformed second partiaf derivatives.
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(@) For convenience we write (x1,%,%:) instead of (x,,2) and let
2y = x1(r1,7,738), ®y = xalry,rama), r3 = xylri,rera) (16)

be the equations of transformation from the cartesian system (zy,2y2,)
to a general system of coordinates (ri,rsrs). We suppose that the equa-
tions in (16) are twice continuously differentiuble in the region B on
which we fix our attention below and that the jucobian of the transforma-

tion'—namely,
wy dxy  dy ‘

ary dr O A
o Ay 2as) 9Ty 9T dwy N o l
= e | B O\
D 6(“"'1,-?'2,?‘3) drg  dro  Ors £\ N (l "r)

s W/
L ¥

Omy 9wy Oua|
_6?'3 a?':; 6?';;.,,‘( ’.‘Z

—does not change sign, although it may vanishw‘it-\berta,in exceptional
points or along certain exceptional curves, in fy
We consider the iriple integral ’::\\~

A\
I= _gff(xl,$2;$3,'w,w'x1!?ﬁ;ﬁw:g)dfl'l day das, (18}

which we transform according @pgff{l[‘)“). By (16) of 2-8(f), (18) becomes,
with the aid of (16) and (17),3.’;"

I= !;f ﬁ({'grz,ra}w,wr,,wr,,wr,){Dldrl dra dis, (19

where B’ is the regien R, but described by the variables (r1,rer3), and
£ ‘,".
F NI, 700 Wi Wiy W00 = f(21,200,3,10, 000,102,104, .

. AN . . .
In f, thatyds/ we substitute for (z1,4,,2;) and express the derivatives
(e, 107 20y explicitly in terms of (ws,wnw,,) and (ry,re,rs), through (16),
and seiform the function F,
\Thﬁ transformation of the first partial derivatives requived in the

\szatmn of F from f is accomplished most easily by solving the linear
gystom
3

dw; . ,
Wy, = 2 w’:‘-é’?"_j (J = ]-!2'3) (20)

for (W, wets). The coefficients (dz:/ar;) are computed directly from

the transformation equations (16). A specific example of this compu-
tation is carried out in (¢) below.

! See 2-8(1.
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- (b) Based upon-w, which is eny continuously twice-differentiable func-
tion of position—of (wy,2x35) or of (rirers), with the ‘correspondence
established through (16)---we form the auxiliary one-parameter family of

funetions
W =w + e,

where 7 1s an arbitrary continuously differentiable function of position
which vainshes on the boundary of £, and therefore on the boundary of
R'; und eis the parameter of the family. In both {18) and {19) we replace
w by T (in terms of the appropriate variables), w, by Wi, = w0z, + egzim
(18), w,; by Iy = Wy + e in (19), and so form two distinet expressions
for the =ame uantity Fe). o\“}'

‘The process of forming I'(0)—that 1s, differentiating I (e) \vith;}espect
to € and setiing e = 0—and applying Green’s theorem is idémtical with
the process carried out in 9-1(s) up to equation (9} inchléivef Guided
by this fuct, we may divectly write down and equate't’.‘tﬁ two forms of
I'(0) computed from the equal integrals I(e) definedin the preceding
paragraph: ’:’,\\“

\\
3 \O
.:'”(0) =]ffn [:—i} - 2 a—(};—d (gg;)] d.’l’,‘l d.’l’)z dﬂ?s
R f=1 RN ’
AN D)
B oF|Di N o (oF )] _
= fff” [W\“ 2 ar, (_Fawﬁ dyy drs drs. (21)
R )
™

g=1

The finul stage of thé\development is reached by transforming the
middle member of (21§ atcording to (16). In the samc way that (18} is
evolved into (19);{hat is, the middle member of (21} may be made to
read \V

Q :

\w\;'ff;:ﬁb) _ gf” [%i _ E 2 (gii)] D\ dry dre drs

i=1

[t therefore follows from (21) that

3

ARG

3
_ [@ﬂa = z_a_(@l_D_l ]] dry dry dra = 0.
aw s Org \ 0y

i=1
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Since » is arbitrary in B, we apply the basic lemma of 3-1{(c), extended
to three independent variables, and go obtain, on dividing through by |D|
and dropping the no-longer-needed absolute-value symbol,

3 a
of _N o (afy_ _1[@_2 (afDﬂ, -
w Oz \ W, Jw 3?‘, ow :
=1 el

where f replaces F along with the understanding that in the left-hand
member f is expressed in terms of (1,22,24,0,202,02,1;,}), while in the
right-hand member f is expressed in terms of (r1,72,73,W, Wy, Wy, Wr M Wince
w is completely arbitrary to within twice continuous drff(,reh{lablllt},
(22} constitutes an identity in w and its derivatives: The trahstérmation
(16) carries the Euler-Lagrange expression given by the 1e}“t—}und mer-
ber of (22} into the transformed expression given by the equal right-hand
menther. m.\

() For an illustration of the use of (22) we emiploy

f—w-+w+wﬁ\' (23)

where we replace (z1,70,23) by (2,%,2) a,nd ‘effect the transformation to
splierical coordinates?

»,'
<N o

T=rsinfeosd, y=WMsinfsing, z=rcosd, (24)
with \

~

0Lr<w, N\OZ0<7 0=2¢<2r (25)

~\
Here we have r; = r,,74'5 8, rs = ¢. The jacobian of the transforma-
tion (24) is readily calhu ated to be, according to (17),

\& D = r’gin 6. (26)
From (2Q1<§.}iih the aid of (24), we compute

A’%u"),= Ws sin 4 cos ¢ -+ wy sin 0 sin ¢ -+ w, cos 6,
\,j N W = wer c0s 8 cos ¢ + w,r cos 6 sin ¢ — w,r sin B,
_<e We = —w,r sin 8 sin ¢ + wyr sin 9 cos ¢.

S}lvmg this system, we have the required transformation of the first
partial derivatives

. c i
Ws =m,s:unéiem-;gév+wa~9—§E—EO—$¥"E — Wy 311.1¢r
T rsm @
. . cos § s
Wy = W, 8in 51 ¢ 4 w, sin ¢ Wy cos ¢s (27)
r r&in #

sin
W, = w0088 — wy —
T

! Bee exercise 5 at end of chapter,
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Squaring and adding, we obtain from (23) and (26)

.y s . 1
D = wiisin @ 2 7,
i wir? sin 8 4+ wisin 8 -+ w} prr (28) |
Finally, we use (23), (26), and (28) for substituiion into (22), whence
we achieve the identity ‘

1fof w0 1 af.  ow 1 9w
2, — * | Y[ 2 %% - L o= T
Aw = 5 [67‘ (’" Br) T e 3 (Sm 6 ae) gy a¢*]’ (29)

according to the definition' V2w = w.. + wy, + w,, of the laplacian of w.\

{d) The transformation (29) of the laplacian from cartesian to sphérieal
coordinates is o special case of its transformation to a general sygx‘beni of
curvilinear orthogonal coordinates. A system of coordinates designated
by the variables (ry,rs,73) ig said to be orthogonal if, t-hrough any point,
the surfaces 7, = constant, r, = constant, r; = constantintersect at right
angles, A necessary and sufficient condition thata)given system be
orthogonal is that the equations (16) of transformbtion from cartesian
coordinates lead to the relationship N

da? + ded + dal = B} b hbdrd o B (30)

where we find, on direct computationd{fom (16), that

3 .
.- ami * [ =
B = Z‘((g;) (G = 1,23) (31)
&

and that (30) implies />

X

]
.’\n
. axax .
\™ oL ot _ g forj #= k. (32)
\" dr; 91y J
=1

.'\ Iy

In fact,w€ may write (31) and (32) in combination as

)
6 i i . .
2 a—:; % = hi&p (7, = 1,2,3, independently), {33)
im1

where & is the Kronecker delta, equal to zero for j ;-é-k and gqual to
unity for § = k, The quantities ki, hs, s are nonnegative functions of
Ty, T3, T3, .

It is our aim to express the transformation of the laplacian from car-

8ee 2-12(c).
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tesian to general curvilinear orthogonal coordinates in terms of ha, o, by,
We first obtain an auxiliary formula useful in achieving this uim,

On multiplying both sides of (33) by (8r;/dx.,.} and surnming  with
respect to §, we obtain, with the aid of the definition of 3,

b

3 - -
63;. c'i:t:,- a‘;}. . 6?';‘- .
'''' : - — = ;_-‘ .
Z 21 [Z dr; 6:1?,,,J b ax., (34)
= |

= i=1

N
The sum in square brackets is clearly (dz./d2,.), and is t.h(z:;efore Zero
if £ # m and unity if ¢ = m—is equal, that is, to 8;,,. Thus i>lu1}9nly non-
vanishing term in the sum over 7 in (34) is the one for whigly? = m, with
the coeflicient of {92./rs} equal to unity, so that (3] rcprds
On _ 1o T

By T

(kom = 1,23, indepeigently). (35)

A\
Replacing (m,k) by (4,7), we use {35) to ‘:ﬁ}e {20) read

(36

It is seen in (¢) above that the left-hand member of (22) becomes o con-
stant times the laplacian s\we choose

N\ 5 |
f= E Wk (37)
i=1

A%/
O

:t\n'
as in (23).\;}Yith {86) equation (37) becomes

A

3 A B4
24y ar; or, hihi ar; ar
= J=1k=1

i=1
K

=1k
W, wf,- i
-2, g W= o
i=1lk=1 ' S
where the penultimatoe expression is obtained from its prodeeessor with
the aid of (33) and the final form follows from the definition of &;.

T'o evaluate the Jacobian D in terms of (1 he,hz) we multiply the
determinant (17 by itself according fo the rule given in 2-8(¢). Thus
D% is o three-hy-three determinant given by
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_ 3 3 3
i % a_-'ﬁ; o, dx; ax; ax;'
I : (}?‘1 6?’1 a?‘g 8?"1 a’!‘a ?3—?'_1
it=1 =1 $=1
3 3 !
D = | E da; 02 3, 9 da: 0
ory drs Oy 0y ary drs
‘ i=1 i=1 i=1
ioB 3 K
! Ei;c_; {_3'.'5?' 93:_1 ax; ax; 0x; |
! ary Ors ara drs dr; Ors ||
i=1 i1 i=1 .
i 00 o
= 0 R0 = hinghi, O\
0 o Rl O
with the aid of (33). Thus, since i, he, ks are all pDSit-i\fe,(\‘;fé have
R4
D = h1hgh3. \ N ) (39}

With (37), (38), and (39) the transforma.taorL\gq}la.tion (22) yiclds the
result O

A

we L [0 (uman), o (on) 0 (Weos)]

v = Tirtuhs [Z??L( h 3?‘1) + a?"g.'(:.ﬁb-g' 6?"2) - dry \ hy 0713 (40)

To illustrate the use of (40)3&-’6'{133 (24) of (¢) above to compute
dz? + dy° 4 da? = dr? + 2 dg¥CF r? sin® 6 dé?, s0 that by = 1, he = 7,
hs = rsin 8. With 7y = r,'\‘zag,?: 8, rs = &, (10) leads directly to (29)
of (c). \ \

(e} In transformingy Buler-Lagrange espressions which involve only
two independent \{na Sles, we may use the result (22), but the sums over
i from ¢ = Ltdd = 2, only. Similarly, we may use (40} to t-ransf?m1
the two-dimen\gioﬁal laplacian Vi = ez + Wy by suppressing the final
term and b}i:setting s = 1 in the remainder of the formula; that ig, we
have m”\

\ \} i R l (9 hz a'l'.U) ﬁ_ (h_l .ai‘{"‘ ]J 4:1)
Vi = m 51"_1 hi 9 + drs \hg 872 (

where (ry,7y) are plane eurvilinear orthogonal coordinates, with

da? + das = hi dr? -+ hj dri.

For example, in the transformation from cartesian to plane polar coor-

dinaies, we have

2, = 7 eo8 8, xg = ¥ 8in 6, {42}
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wherer; = 7,73 = 6. From (42) it follows that dx} + da} = dr® 4 12 gp,
so that hy = 1, he = r. Thus {41) becomes

14 o 1 o*w
Vi = o (" ‘"‘) + 5o 43)

9.3, The Vibrating Membrane

To derive the partial differential equation which describes the motion
of a vibrating elastic membrane we appeal to Hamilton’s prineiple,
introduced in 6-2, so extended as to apply to a mechanical sygictm in
which the mass is distributed continuously. This is done, agdbythe case
of the vibrating string (7-2), by considering a continuows pivbss “Clistribu-
tion as a Limiting case of a system composed of discretg,g‘gﬁ.’sspurticles—
the case to which Hamilton's principle is initiallgiheld applicable,
Mathematieally, the limiting process 1s eﬁ'ected'.iﬁ.’ﬂ. natural way by
replacing sums over the particles of the discreté\dystem by integralsover
the mass distribution of the continuous system.’

{a) We consider a thin elastic membrané\'extended over a giveh Non-
self-intersecting closed carve C in the aplane. The bouundary curve ¢
is supposed to consist of & finite numbef“of arcs along each of which the
curvature is continuous. The planeddomain D enclosed by C coincides
with the equilibrium conﬁguratio'gi‘df the membrane.

We suppose the membrang t3*be in a state of vibration in which each
of its points undergoes a Motion in a direction perpendicular to the xy
plane. For the prese t'\{'we’conﬁne our attention to the casc in which the
boundary edge of the kmbrane is constrained to coincide with the curve
C. Aside from those which hold the houndary edge in place, the only
forces which inﬂgénce the membrane motion are the elastie (orces which
arise from thg}leformation of the membrane relative to its plane equi-
librium co‘{iﬁg’uration.

The‘désplacement from equilibrium st time ¢ of a given membrane
poir;té,i’hose motion oceurs along a line eharacterized by particular values
of Band ¥ is denoted by w(z,y,{). Thus the configuration of the mem-
brane as a whole is described, at any instant £, by the function 1w = w{z,y!)
of the three independent variables indicated; w may assume, of counrse
both positive and negative values, with w = 0 indicating a point of the
membrane instantaneously in the xy plane. In particular we bave

w(z,y,t) = 0 along ' (all §), (44)

in view of the a.bwe-impnsed condition which fixes the boundary edge in
the xy plane. Since the membrane is supposed free of slits, and since
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mechanical motion cannot oceur discontinuously, w is a continuousfunc-
tion of ¥ and y in D and of ¢, for all £. Moreover, since & discontinuity
of velocity with respect to position would induce a tear in the men;-
brane, we have that the time rate of displacement—designated by
(ow/at) = w(x,y,f)—is continuous in D as well as being a continuous
function of £ Finally, we suppose that the first and second partial
derivatives of w with respect o the position coordinates—w., wy, We-,
Wyy, Wer—are continuous in D.*

() We denote the mass per unit area of the membrane by the con-
tinuous positive density funetion ¢ = #{z,y). We confine the motion. t6\
amplitudes of vibration so small that ¢ is effectively independent of .
Since the velociby of the point at (x,y) is é(z,y,) at any instant,\’i;‘ the
kinetic energy per unit area is accordingly $o(z,y)ji{z,y,£}]2. Integrating

~
4

over D, we obtain '

7

T = éﬂmﬂ* dx dy \ (45)
5 \

for the total kinefic energy of the membrane as a~fﬁ\n'eti0n of time.

The elaslic potential energy of the membragie in any configuration is
equal to the amount of work which is requiljed:iﬁ order to bring the mem-
brane from equilibrium to the given configurdtion. Since the membrane
is assumed to be so flexible as to give nBvesistance to bending, the work
of deformation must be entirely owing*to the increase of the membrane’s
area relative to the equilibrium dtea of the domain D. We proceed to
compute this quantity of wor’kg\under certain simplifying assumptions
characteristic of the usual membrane theory:

Across any arc drawn i phe surface of a stretehed membrane, the por-
tion of the membrae'oh one side of the arc exerts a normal stretch-
tesisting force on he“portion lying on the other side. If there is no
lateral motion of &y point of the membrane, and if the elastic properties
of the membrae are isotropic (independent of direction)—both of which
assumptiop;i: are appropriate to our theory—the stretch-resisting force
per unit“are’length is a constant with respect to position; and if we deal
with only’small deformations, it is likewise constant with respect to time.
This positive constant force per unit length—the so-called surface ten-
slon—we denote by the symb{)l 7. An elementary physical analysis
shows that the quantity of work required to increase the area of the
membrane by & small amount A4 is given by (rAAd):

! This restriction i partially removed below in 9-T(a) to provide for the possible
exveption of a finite number of isolated points at which, and a finite number of srmnoth
ares seross which, finite discontinuities of the derivatives may oecur.
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T Fig. 9-1 we suppose that the membrane is initially plane and ig
bounded by ' after tleformation,
it is still plane and is bounded by
¢’ Tt any line normal to ¢ have
intercepled on 1t by € wnd €7 a smail
segment of length & = (s}, where g
denotes  the are coordinate on €
measured from some fixed point on
. The quantity of work dpuo by
the stretehing ageney is clearlWgiven,
if & iy everywhere .«;1‘11:111\:(‘\)mpar(3d
with the linear dimensions of D, by O

N

Fia. 9-1.

N 3
N

ILU ré(s)ds = 71 f“: 8(s)ds = TAAD,
0 0 o

where L is the total length of (.
Tn any given configuration described hy -ap,:s\w(:u,y}é) the tolal avea of
-the membrane is given! by M\

[y
i3 N\

TN

Thusg the potential energy of“défi:')’rmation is
V= I{.\«QZIZ—% I ¥ wjdedy — [[du dy), (46)
P D

where the second iﬁ;t-'égral is the equilibrium aren—the urea of D2 We
agsume the deformation such that at every instant ¢ the quantities #:
and w, are godmall that we may expand

O

*

VIFwl+w) =1+ 4w+ u) + -

arrd;n;jglect without error the highor powers indicated by dots. With
this’assumption—which is the requirement of the usual itheory that the
deviation of the membrane from a plane figure is always slight—(46)
becomes the working formula?

1 8ee 2-9,

* Although the derivation upon which {46) is based takes into account no bending
of the deformed memhbrane out of itg original planc configuration, the fact that there 8
required no cxpenditure of work to bend the completely flexible membrane justifies
the use of (46) here,
ot The forces exerted hy the external agency that keeps the boundary edge fixed
involve no motion and 3o contribute nothing to the potential encrgy of the system.
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Vo= 1 f f (w? + whde dy. (47
i

According 1o 6-1(d) we have from (45} and (47) that ihe lagrangian of
the systom constituted by the vibrating membrane is

Jo= 1 =V g [[ o — (el + w)ds dy.
D

According to [Tamiltor’s principle of 6-2 the integral ~
L+ tz
I= L Ldl =% ﬁ. ff[ati:3 — 7w + wi)lde dy dl ,(48)
i ~

'\
N

i extremized by the funetion w{z,y,t) which describes the agfual motion
of the membrane; the cxtremization is offected with respeétto funetions
w which vanish on € for all £, which describe the actddl Membrane con-
Fgurations at ¢ = £ and ¢ = f2, and which salisfy the yegularity condi-
tions set forth in (@) above. The limits of integration’t, f» are completely
arhitrary. \ !

To finvl the differential equation sati sfied ’bfyi whe funcsion wiz,y,t) which
extremizes (48) we may use the results of'9+1(a) if we replace 2 by ¢ and,
aceordingly, . by . The reglon R ofi$-1{a) herc becomes the eylindri-
cal region generaled by moving the dbrhain D purallel to the “‘¢ direction”
from{ = ¢, tof = 5. The eondition that w be preseribed on the bound-
ary B of R is fulfilied herg; BY the imposed condition w = 0 on C we
have that w vanishes on theveylindrical portion of B; since Hamilton’s
principle requires that ol preseribed at i = & and ¢ = fs, the plane faces
of B are taken care ofo Thus, with

9\

Y 5= Yeuw? - (w) wl
.\'§ . E 7[ ( y)]r
according&@f{éS}, the result (9) of 9-1{a) reads

\‘.“ 62
\ 4 Vi = o Ezj’ (49:‘

where V2 = w,, 4 Wy, 15 the two-dimensional laplacian of 2. We refer
to {49) as the vibrating-membrane equation.
9-4, Eigenvalue-Eigenfunction Problem for the Membrane

(a) The initial assault upon the membrane equation (49) consists ol
seeking a solution of the form

w = p(z.yelt), (50)
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where ¢ satisfies the boundary condition
sy =0 onC, (51)

—go that (44) of 9-3(a} is gatisfied by (50)—and the normalization
condition

f[a¢= dedy = 1. (52)
D
From (50) it follows that N
9? )
Vi = ¢Vi¢, E:g = ¢d, O\
PR
so that (49} becomes, on division by sw = odg, AN\ '\’
Ve § 0
= = 53
o q \% ©3)

Since the left-hand member of (53) is indep}tfdent of ¢, and since the
right-hand member depends upon ¢ alongpit follows that cuch member is
a constant, which we denote by —X. Thils we have inherent in (53) the
pair of equations R\
A¥ N =0 (54)
and \ .
OV + hod = 0. {65)
~\

The values of \ are as¢vef undetermined.

With the fact that\ is positive, proved in (b) below, the general solu-
fion of (54) is dirgetly found to be

A
N\ g=Acos/At+ BsinvN{, {56)
:“\5.

where Q&nd B are arbitrary constants. We note that g is a periodi¢

func.tii;a:n of circular frequency (2« times frequency)
4 o\’ : 3

O w =X (57)

so that (50) represents a membrane vibration which is periodic in time.
Ti:xus the determination of permissible values of A constitutes the deter-
mination of the list of frequencies {w/2r) with which a given membrane is
capable of executing periodic vibrations.

_(b) Bince (51) and (55) are homogeneous in ¢, and because ¢ is & post-
tive function, any nontrivial solution may be multiplied by a suitable
constant in order that the normalization condition (52) be fulfilled.

Th‘e.solution of (55) in the domain D, in eonjunction with the boundary
condition (51) on C, constitutes an eigenvalue-eigenfunction problem of
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the sort encountered in Chaps. 7 and 8. Each value of A for which (55}
possesses a solution satisfying (51} is an eigenvalue of \.

To prove that every eigenvalue of  is positive—a fact used in the
solution of (54) in (a) above-—we multiply (55) by ¢ and integrate the
resulting equation over D:

)\ffaq52 drdy = —rff @Vig da dy. (58)
B B

Because of the normalization (52) the left-hand member of (58) is simply™\
A Applying Cireen’s theorem (23) of 2-13 to the right-hand member, we
obtain from {58} \ \)

Ny

8o A\
A= fﬂ(¢g+ ¢)de dy — rfoqb%ds, Ny @9
] ~\

where the second integral on the right is a line integedl taken along the
boundary C of D and (8¢/3n) is the norma) dezivitive of ¢ taken with
respect to the direction exterior from D. Becalse of the fact that ¢ = 0
on €, however, the line integral vanishes,aﬁnd' (59) shows that » = 0.
For the equality to hold we must have s =g, = 0, which implies that
é = constant in D; but since ¢ = 0 on®, this means that ¢ = 0 in D—
4 trivial solution, and therefore 1101’;.' an eigenfunction. Thus we have

A >0 A

For purposes below we pqintipht that (59) follows merely from the fact
that ¢ satisfies (65} for thp\gq\*en value of X: (59) in no way depends cn
the boundary condition.placed upon ¢.

{¢) Asin the cage of $He vibrating string, the eigenvalue-eigenfunction
problem for the mdembrane may be characterized as an isoperimetric

problem. If wg\:seék to extremize the integral

= [f (g1 + eDdsdy (60)
\ )| 2

with respect to twice-differentiable funetions ¢ which vanish on € and
which satisfy the normalization condition

gaqﬁz dedy =1,

it follows directly from 7-1(¢) that ¢ must satisfy the Fuler-Lagrange
equation

Tvgﬁb + M¢ = {}:
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where A plays the role of undetermined Lagrange multiphier. The iden-
tity with (55) s observed.

Comparison of (60) with (59), with ¢ = 0 on ¢, shows that each
extremized value of I ig one of the cigenvalues of . [1 9-0 below, this
fact takes on & more preeise meaning.

9-5. Membrane with Boundary Held Elastically. The Free Membrane

(a) We consider here the vibrating membrane which possesses all the
characteristics of the membrane described in 9-3, with Lhe exeeption that
its boundary edge is not held in fixed position along the closed cive ¢ in
the zy plane. Tnstead, we suppose that the membrane odehis bound
elastically to the curve €' in such fashion that each poi;nt;:?_nf the edge is
free to move in a line through € perpendiculut to theddy plune.  The
nature of the binding ageney is such that it pulls cagh/pint of the hound-
ary edge toward the point of € through which l‘h“(g\]mint ts {ree to move
with a force proportional to the displacemental the point from the gy
plane. Thus the eguilibrium position ofZA¢ moembrane edge is the
curve C. o\

With the are length s measured alongX" from some fixed puint on €' we
consider the binding force acting up@u‘an arbitrary element of the mem-
brane edge having the length ds$a the equilibrium eonfignrtion, The
binding force experienced by this element is —p(s)w ds, where the pesitive
function p(s) measures thegtrength of the binding along ¢ wnd the minns
sign indicates that tlggmt}srce opposes displacement from equilibrium.
The potential energyxiesociated with this foree is

N> p(s)dsfw die = §p(s)w® ds, {61)
where the arbifhaty constant of integration is chosen so as to make the
potential endtgy zero In equilibrium.  Finally, the total binding potential
energy,\,@q‘mincd by integrating (61) along €, is

. .\': go Tfﬁ = % [C ])(S)'wg d'\.‘, (62)

Whére of course w is a function of g along .
We Suppose that the binding ageney is such ax to contribute negligibly
tio the kinetic encrgy of the system.

.(b) I.f the integral (48) of 9-3(b) is to apply to the membrane under
dLSGuSl&OI:l here, the potential-energy term must be augmented Lo inciude
the bm.d.mg encrgy Ve given by (62). That is, the tutegral which 18
extremized by the funetion w = w(x,y,t) that deseribes the actual men-
brane motion is

I=4 j:’ {jf [20? — (w] + wy)ldw dy — ,[c p? ds} ef, (63)
I
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where the exlremization is cffected with respect to functions w which
describe the actual membrane configurations at ¢ = ¢ and £ = i and
which satisfy the regularity conditions set forth in 9-3(a). There is
nothing in the mechandeal problem under consideration which requires the
imposition of any specific condition {o be salisfied on the boundary curve ¢
by the funetions w eligible for the extremization. :

As u preliminary o the process of extremizing (63) we transform the
line integral of (63) according to Green’s theorem (21) of 2-13 as follows:
We define the funclions P = Pz, and @ = @{z,y1)71 as

. i ds 1 ds Q
> = _ 2 = — gt 2= . ¥
f 5 PW &y 4] 5 PUt on (, ({34}
o\
and otherwise arbitrary—to within continuous twice differentiakility- -
in the domain D.  With (64), we have N
1 ds ds R4
gl - _ o B2 2 2 g — T e
fc pt ds 5 L ('pu & dy + pw e a’x) L (R — Q dir)
dF | oQ PN -
= — — J:{._: 5 o"\ i}
ff (ax + ay) e dy, K¢ (65)
ye) \®

according 1o (21) of 2-13.  With (65) we rx;’gf&“l;cwritc (63} as

I = % ./; ]f [au‘}g — 7wl —ﬁ—"'fbi;) — (%‘2 + i{%)}dm dy dt, (66)
Fi]

an integral carried out over fc-hﬁi})}indrical region R of zyt spuce described
in 9-3(H) just below {48). L\ N

Since there is a portiop, &hthe boundary B of R—uamely, the cylindrical
gurluce generaled byy tlfe’ motion of {7 in the t direction {from { = & to
t = t;—on which {Hehlnctions w eligible for the minimization are unre-
stricted, we (Z&I’ﬁ(C).t-"\:\-'it-l]Ol.lt alteration apply the result of 9-I(a); in that
section it is rafulired that cligible functions w be prescribed everywhere
on B. We<may, however, use (7) of 9-1(a), which is achieved without
special ffééuﬁlption concerning Lhe values of the arbitrary funetion 5 on
B: we miist, of course, replace 2 by ¢ and . by @ in (7). Thus we bave

. af af af af ) o _
= L L Ngpdydt =0, (6
ﬁ f[ (r'iw ot B, Ay, m 3" dx dy ) (67)
i1

aP | 9Q
f — ]Q [O..w? — ',—(wz -+ ’w:) — (_3_'!7 + % ]J (68)

T The derivatives (ds/dy) and (ds/dx) have refercnee to the curve (.

where
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where \ plays the role of undetermined Lagrange multiplier.  The iden-
tity with (33} is observed.

Comparison of (60) with (3%}, with ¢ = 0 on €, =hows that each
oxtremized value of I is one of the cigenvalues of o Ine 98 below, this
fact fakes on o m0ore precise meaning.

9-5. Membrane with Boundary Held Elastically. The Free Membrane

(¢) We consider here the vibrating membrane which posscsses all the
characteristics of the membrane described in 9-3, with the exception that
its boundary edge is not held in (ixed position along the elused edeve € in
the zy planc. Instead, we suppose that the membrane edse’s bound
elastically to the eurve C'in such fashion that each I)t}iflf‘zbf the edge ig
frec to move in a line through € perpendiculur to thed/y plane. The
nature of the binding agency is such that it pulls enghpoint of the bound-
ary edge toward the point of € through which tl'ﬁ;\mint is ree to move
with a force proporticnal to the displacemenibl the point from the oy
plane, Thus the equilibrium position of/2l¢ membiine edge is the
curve €. A

With the are length & measured along ¥7 Trom some tixed point on € we
consider the binding force acting upen’an webitrary element of the mem-
brane edge having the length ds¥n the equilibrium confivration. The
binding force expericnced by s element is - p(xjw s, swhere the positive
function p(s) measures the@rength of the hinding nlong ¢ and the minus
sigh indicates that tha*%rce opposes displacernent {rom equilibrium.
The potential energyassociated with this force is

plsidsfw dw = Ep{shw? ds, (61)
where the g iﬁr\ary constant of integration is chosen o as to make the
potential engify zero in equilibrium.  Finally, the total binding potential
energ%ﬁbtained by integrating (61} along (. is

N,
e

o \ N Ve =% j; ]’?(Sjwz dx, {62}
\W\here of ecourse w is a function of s alony (.
We suppose that the binding ageney is such ws 1o contribute negligibly
to the kinetic energy of the system. l
.(b) I.f the integral (48) of 9-3(b) is Lo apply to the menmbrane uader
dlsc-11§510n here, the potential-energy term must be augmented to inclut?e
the bu{ding energy 17y given by (62). That is. the infegral which 13
extremized by the function w = w(w,y.0) that deseribos the aetnal mE
brahe motion is

I=3 EE {ff loh* — r(w} + wilde dy — f(, et tf‘_\:} i, (63)
3 ’ _
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where the extremization is effected with respect to functions w which
describe the actual membrane configurations at § = ¢; and ¢ = & and
which satigfy the regularity conditions set forth in 8-3(a). There is
wothing in the mechanical problem under consideration which requires the
smpostiion of any specific condition o be satisfied on the boundary curve €
by the functions w cligible for the exiremization. :

As o preliminary Lo the process of extremizing (63) we transform the
line integral of (63} according to Green’s theorem (21) of 2-13 as follows:
We define the funclions P = Plz,y,f) and @ = Qa,,6)1 as

. s §
P o=z puw?—: Q= — ;pu? o on €, (ﬁf)

¢\

A\
and olherwise arbifrary—to within continuons twice differentinbility—

in the domain D. With (64), we have SO
1 ds ds Y
apnd —_ B [T p— = iy —
fg put ds 5 L (pu, a dy + pw p d:c) ﬁ (Bdy — Q dx)
A/
ar  aQ Y .

= i s 2 W O ¢ 65
f[ (6‘:1: + c'ly) dx dy, C’x\ (65)
D . -~ Y

according to (21) of 2-13. With (63) we, ;ri'af rewrite (63) as

vy e ..::'; ’ ]
T3 fi | j f Lmz — vt ) - (% + %ﬁ)]dc dy di, (66)
2] 4

an integral carried out ovcr.t-@ic"_\ylindrical region R of ayt space deseribed
in 9-3{b) just below (48}, N o

Rince theve is a portion el the boundary B of R—namely, the cylindrical
surfuce generated by “hia motion of € in the ¢ direction from { = ¢ to
t = t,— on which the funetions w eligible for the minimization are nnte-
stricted, we caiwnt without alteration apply the regult of 9-1{a}; in that
section it isyetpuired that eligible functions w be prescribed cverywhere
on B. ﬁ{(ﬂ,\',in;x.}', however, use (7) of 9-1(a), which is achieved without
specia@@sﬁmption concerning the valucs of the arbitrary funetion ¢ on
B; we must, of course, replace z by ¢ and . by 2 in (7). Thus we have

" af af af ir_')d-d di =0 67
[ [ (& s Lot Zhon v Ga)dedudt =0, 6D
n

where :
' ap - o '
f= % [J‘If}g — r{wl + w,’j) - (a—{ + Fy)} (68)

t The derivatives (ds/dy) and (ds/dz) have reference o the eurve .
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according to (66); 7 is arbitrary to within continuons differentiability and
’?(x;y;tl) = n(m,y,tg) =0, (69)

according to the requirement of Hamilton’s principle that the eligible
functions w be prescribed at t = and | = {u.

Tn the final term of (67) we carry ouf the integration over { first;
integrating by parts, we geb

[ ff _adrdydt = fff ——qdzda,dy O
L [ aE S
ff f ai{—w—>dhicdy, (76)

because of (69}.

The second and third terms of (67) axe, t}aanormed by means of (22)
of 2-13 to give W W

"

o X
N

f [f (aif: P + ) I dy ii');’:‘ .
L \,&( Ta«: 2 (aaf )} i

of dy _ of @} car (71
,\“ f f [Ow,ﬁ duy ds dsdt. (1)

2
Wit}?‘(z{)}"and {71) equation (67) becomes

w T T af af of of
\ﬁ‘l:iﬂ"[éﬁ (aw 6y(aw) ar(aw)]dm’

o dy  of dx] } -
1 oy W oes =0 (%
' f c K [aw:, ds drwy, ds ds di {
for all ¢ satistying (60). In particular (72) holds for those 5 which vanish
on C; for such 4, only the triple integral remains, and we may apply the
‘oasm lerimna of 3-1{(c), extended to multiple integrals, to conclude thab

a4 _3 af)b%(%) at(gﬂ) o D (9

dw oz \ow

x,
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for all &.  With (73), and with » once again arbitrary on €, examination
of {72} in light of 3-1(¢) yields the further resylt

3w, ds éh{f}_y ds =0 on C. (74)

{¢) The membrane equation (49) is obtained in 9-3(8) by substituting
J = #ow? — r(w} + w))] (75)

into {9) of Y-1{a), with appropriate changes of notation. If we now subé\
stitute {(68) into (73), which ¢s identical with (9), we must get preciselyath®
same eguation of motion as (49)—namely, \ \)
@%w
Vi = g el “~ N (76)
RS

TFor (6R) differs from (75) merely by an expression of thé fozm [(8P/dx) +
(6Q/ay}]; according to 9-1(d), with B = 0, the additionyof such an expres-
gion to (68) can have no effect on the resulting E{le}-La-grange equation.
The equation (76) describes the motion of theMuembrane of this section
as well s that of the membrane with fixed beundary edge.

The influence of the final two terms of‘:(.B'S) is expressed when f is sub-
stituted into (74) for the derivation ofithe boundary condition which
must be satisfied by the function w that describes the membrane motion.
Sinee we have! <

O
%i: = Px:'f"\R}J'w:, g§ = @y + Quiny,

(68) becomes i

F = How? Lol + wl) — (Pa+ @) — (P + Quawy))

20 thal O
1

. 6‘_{ i of
'\ a— : - - . = - —— -
{ = Tt 5 Pw; awy Ty 9 Qr. )

...\. EYey
\ 3
ds

af 1 ds a _ Lo &S
Gu, = W TgPUEe gy, = Tty oG (D)

or

a8 we find with the aitt of (64). Substitution of (77) into (74) yields

d dx
r(w,a%-—wyzg)—i-pwr—ﬂ on €,

' Bee (13) of 0-1(d}, with the accompanying footnote.
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or, with the use of (13) of 2-7(d),
dw .
T an + pw =10 an (7 (78)

(8w/dn) is the normal derivative of w taken with respeet to the direction
exterior from D.

By way of summary, we have that the funciion « = wlx,nt) which
describes the motion of the membrane whose edge 15 held clastically
satisfics the equation (76) in D and the condition (78} on the i')ul{ndaly
The positive function p = p(s), introduced in (a) above, 15 u Measure of
the strength of the force distribution which binds the hmuu{n\y edge.

(d) We attack the equation (76), with the condition {:H} il much the
same way as we handle the corresponding problem of i,h.(" moemubrane with
fixed boundary edge in 9-4{a): We seek a solution af> Phe form

o = s 2O )
As in 9-4{g), it follows directly that \\
q—Afo*s\/)\t{-Ram\/if {80
with A and B arbitrary (OﬂbL&IItS »ancI that ¢ satisfiex
V% %;:.qu =0 inbD, (81)

with the boundary condit.ipn;derived directly from (78) snd {(79)—
c }j
'\\%gg—i-p:f; =0 onC. (82)
The eigenvalug§bf \ are the values of A for which (81) posscsses a solu-

tion which sgbisfies (82); such a solution is an oigenfunction, upon which
we 1mp<<3 “the normalization condition

[[oeanay =1 )

\ To prove that X is positive—a fact upon which the form (80} of q(t)
depends—we use (59) of 9-4(b), which is valid for any ¢ that satisfies
(81) and (83). If, further, ¢ satisfies (82), then (59) reads

A= Tﬂ (@7 + ¢l)dx dy + fc pdt ds, (84)
i)

which is clearly positive, since = > 0 and p > 0.
As in 9-4(¢), we can show that the eigenvalue-eigenfunction problem
under discussion may be set up as an isoperimetric problem, It is feft



§9-5] SEVERAL INDEPENDENT VARIABLES 153

for exercise 6(h) at tho end of this chapter to prove that the functions
which extremize

P = [ @+ Sdedy + [ petds
fi

with respect Lo sufliciensly regular ¢ for which the normaliz.ation (83)
holds, but upon which ne boundaery conditions are imposed, must satisfy
(81) and (82). A fuller significance of this fact is brought out in 9-9
helow.

(¢) Upon introduction of the binding-force-distribution function fp(s)\

in (¢) above, it is assumed that p is everywhere positive along C. {We
may, however, remove this restriction by supposing that p(s) may ranish!?
over any portion, or over all, of . At those pomts of C at Whi(;h‘%)té) =
the memabrane edge is completely free of external constraingwith regard
to its motion perpendicular to the @y plane.” In paftiwflaﬁ- if pls) =0
identically along C, the membrane edge is completely frpe and we speak
of the free membrane. 'The physical realization of:hge:frec membrane, of
course, is somewhat doubtful, but we consider it Nefe for its mathematical
interest alone. P N\%

With p = 0 jdentically on C' the boundayy fondition for the free-mem-
hrane eigenfunetions becomes, accordiyug’;to"(SQ),

9 _ o anc, (85)

and from (81} it follows thafs@j ' constanl is an cigenfunciion correspond-
ing to the eigenvalue » =", It is easily showmn,* however, that the time-
dependent, factor g(¢ni6not periodic when X = 0, so that this eigenvalue
Is of no interest frcmi £he standpoint of vibrations; we cannot, however,
ignore it completély; as we see below in 0-9.

(f) A mcmb':}fe may have portions of its boundary edge held fixed to
the equilit;riyi’m curve (!, while the remaining portions are bound elas-
tically, i'ﬂih\ﬁl manner deseribed in (a) above, A slight modification of the
analyaﬁ of (1) shows that the eigenfunctions are required to satisfy ¢ = 0
on those portions of € to which the edge is held fixed and to satisfy
v(8¢/dn) + pé = 0 on the remaining portions of C, with p = 0. The
differential equation satisfied by the eigenfunctions is (81) in any case.

(¢) Boundary conditions of the type considered in this ehapter —either
¢ =0on C, or (82), withp 2 0, 0r a mixture of both—are called homo-

! Nowhere, however, is p{s) negative.

27t is always supposed, however, that each point of the edge Is coustrained o
move only in 4 straight line through ¢ perpendicular to the &y plane.

¥ Bee end-chapter rxercise 10,
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geneous in that any ¢ which satisfies them may be multiplied by ap
arbitrary constant without violating the boundary conditions. Sines
the same is true of any function which satisfies the ussociuted differentia]
equation *V2¢ + de¢ = 0, the membrane problem as we consider it is g
linear homogeneous problem. It is this fact, of course. which makes
possible the imposition of the convenient normalization condition (83),

9-6. Orthogonality of the Eigenfunctions. Expansion of Arbitrary
Functions A~

(e} In the Sturm-Liouville eigenvalue-eigenfunction problem—Nnelud-
ing the vibrating-string problem as a special case—which j\s'*hﬁmlled in
Chap. 8, there corresponds to sach eigenvalue of the ismeter N one
and only one linearly independent? eigenfunction. In dénling with eigen-
value-eigenfunction problems involving two or morg'independent varia-
bles—such as we have in the membrane problem—*ve'find, however, that
to each eigenvalue of X there may correspond onede'more than one linearly
independent eigenfunction. An eigenvalue/Pe “which there correspond
two ov more such eigenfunctions is called a’}ﬂizltiple, ar digesierate, eigen-
value; otherwise it is said to be simple,(op nondegenerate.

The fact of possible degeneracy Iequires special atlention in the dis-
cussion of the orthogonality of themembrane eigenfunctlions in {b) and
(¢) below. Bpecific examples Qf;legellel‘acy are observed b -8 wid end-
chapter exercise 13, in whigh\we treat respectively the rectangnlar and
circular membranes of uniform density.

(b) We prove, first&thit the membrane eigenfunctions which corre-
spond to distinct eigenyalues are orthogonal in the domain /3 with respect
to the positive weight function ¢ = o{z,y). Next, in (¢} below, we show
that the indepegd’ent- membrane eigenfunctions which correspond to the
same degenerate eigenvalue are always capable of being chosen so as to
satisfy tﬁ wme orthogonality relationship. We prove, that is, that

*

&

\\ oy die dy = {) (J = &), 86)
ﬂ (86,

py \ ™

\i:'here qh,-. and ¢ ure any two linearly independent membrune eigenfunc-
t1ons which correspond to the same eigenvalue or to distinct eigenvalues.’
We have, according to (55) of 9-4 (@), or the identical (81} of 9-5(d}, that

VIt Nodi =0, Vi + Mogy = 0, (87)

1 See 2-8{(¢) for the definitions of linear independence and linear dependence.

2 “f'o deal, of course, with cigenfunctions of a particuler memhrane, for which ¢,
D {with boundary €, 7, aud the binding funetion p(s) are all given, Moreover, the
boundary eonditions are the game for ench eigenfunction.
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where &; and i are the cigenvalues of X which correspond respeetively to
¢; and ¢ If the membrane boundary edge is held fixed, we have
¢; = & = 0 on C; if the boundary edge is held elastically (or is free,
whereby p = 0}, we have

e
on

according 1o (82) of 9-5(d). We suppose that A; 7 A
We multiply the first of (87) by ¢ and the second by ¢;, subtraet,
then integrate the result over D, fo obtain

d;
P2t s =0, +tph=0 oG (88)

Q.

'\

= 7 [C (qb,% — d)f" i;—%?)‘ds, (89)
o

by virtue of Green's formula (24) of 2-13(d). In theledse ¢; = ¢ = 0
on (¢ the finul member of {89) vanishes; the same, fatt holds if (88) is
applicable, as we find on substituting from it for the normal derivatives.

In either event the orthogonality (86) followadrom (89), sinee A # .
(¢) We congider the linearly independent gfge’nfunctions Uy, Uz, - .y U
agsociated with a single degenerate ejgéﬁva.lue M there is no further
eigenfunction corresponding to N Whidfi is linearly independent of the
N functions listed.! DBecause, a@\it is pointed out in 9-5(y), the
cigenvalue-eigenfunction problém for the membrane is linearly homo-
geneous, any arbitrary lingar\gémbination of %y, Us, . . - , Ux 15 also an
eigenfunction which GOI‘]:e:;%OIldS to the eigenvalue Az, We now show
that it is always possible.to construct a set of N linear combinations of

N — M) ﬂ o dr dy =7 / [ (V2 — $aV 902 dy ()
i il

Uy, s, . - ., uy whithform an orthogonal set in D with respect to the
weight function .a{;,\
We considen@;te functions vy, vs, . . - , by, defined successively in terms
of the given }&-1, Wy . - . 5 Uwy through the relations
U1 = U ) ve = G T U Py = Gapr + Gz T Us, e e
) 4
N\ Dy = Gt + Gmavz + ¢ T Y c e (90)
oy = Gy T Qe + - oy
With the coefficients am (¢ = 1,2, . . . ,m— 1im = 2,3, . . . ,N)deter

mined according to the needs of the orthogonality as {ollows: We have

!;f ovys dr dy = a-zlgarv"{ dz dy + gd%’IUQ di dy,

1 That ¥ must always be (nite is shown in 9-12{d) below to be & consequence of the
agymptotic formula for the membrane eigenvalues.
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which vanishes, as required, if

ffo‘i)luz dx dy

b .

Qg = = B —
ff ol da dy
D

With », thus determined ag orthogonal to vy, we evalitate the coeflicients
sy and ag. so that

= sty ¥ dyp = QO
ﬂ ovwz de dy = O, gab_m dedy =0 {01}

.\:\’
are satisfied. The first of (91) yields . O

L ¥
.
R

aﬂﬂ ovt dx dy + ﬂ ovtg dx d?f.:—‘j\ﬁl' .
while the second of (81) gives AN

asszwg dr dy + ffgv}.z’.a{;\(;x dy = 0.
4 A M

~
Y

The process is continued; with sis, . . ., vmor thus determined as an
orthogonal set, the (m — 1) «wgefficients in (90) arc evaluaicd so as to
make v, orthogonal to eachlof vy, vz, . . . ,vm_1. Tt isleft for exercise 11
at the end of this chapie{'xﬁ;\o show that the required evaluation 18

™
) j? o0ty 41 dy

P N\ ¢
i (5

3] .

——— G=12 ...,m— 1L (92}
¢ w 2

: '\ ﬂcv“dx dy

e/

The pi‘(}cess of orthogonalization—the so-talled Schmidt process—is eom-

pleted with m = N,

\‘:Eac.h of the orthogonal set of functions vy, ve, . . . , w thus deter-
mined may be multiplied by a suitable constant in order that the normal-

ization condition (83) of 9-5(d) be satisfied by every member of the get.

With the resuli of (b) above we are therefore justificd in assuming that

the totality of eigenfunctions associated with a given membrane problem

1, b1, ¢35 . . ~constitutes an orthonormal sct in D with respeet 0@
as weight function:

[ costn dz ay = 5 ©)
D
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We note that the Schmidt orthogonalization process does net depend
upon the fact that u,, s, . . . , uy are membrane eigenfunctions, but
merely on the fact that the functions listed are linearly independent in D
The same process can be carried out for any set, finite or infinite, of
Hnearly independent funetions of any number of variables if the domain—
or interval, in the case of onc independent variable—and the positive
weight function are given.

d) Let ¢1, b2 « - ., Sm . . . DE the totality of the orthonormal
cigenfunetions associated with a given membrane problem. Tet g(z,y)
be an arbitrary bounded function defined in the membrane domain I
is such that ) may be divided into a finite number of subdomaing(Dy a
finite set of smooth ares such that g, together with its first partial derita-
tives = and gy, is continuous in each subdomain. Then, if(ijfﬁ? rite

)

glxy) = E i (2,), Com —‘-ffa(pmg dﬂ:é@‘: (94)
D

m=1

AY;
the series converges uniformly to g{z,y) in every'@b\domain of D in which
g(zy) is continuous. The formula of (94) far\the coefficients ¢, follows
directly' from the orthonormality (93). .\ by
Further, in every subdomain of D 1n y&fgﬁch ¢« and gy are continuous, the

N

series =N
i I )
ez = C}'(%F Ju = Cm % (95)
-m,=N\ m=l

converge uniformly toldh ‘and g,, respectively.

(Lo avold going J?e‘yand the scope of our study, the above results are
stated without,preéf.)

H the eigcn‘f%fétions ém(2,) used in the expansion (94) all vanish on
the boundga € of D, the scries for g eonverges 1o zero on €. Thus at
those paifits of C at whick ¢ # 0 the representation breaks down and the
functiop represented by the series is discontinuous, and the convergence
is nonuniform in the neighborhood. If, howevet, g = 0 everywhere on
€, no such difficulty is incurred.

Tf the eigenfunctions ¢n(x,y) used in the expansion (94) satisfy the
boundary condition 7(¢s/n) + pém = 0 oD ¢, the scries converges o
#(z,y) on C, but the derivative series (95) do not m general converge
respectively to g, and g, on C unless also 7(8g/on) + pg = 0 on C.
Difficulties such as those mentioned in this and the preceding paragraph

play no vole in owr study.

1 8ee cxarcise 15 at end of chapter,
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9-7. General Solution of the Membrane Equation
(@) Through the validity of the expansion theorem stated in 9-6 {d} we
are led to a solution of the membrane equation

a%y
TVE’w = 7 W’ (96}

which is sufficiently general to embrace at least all cases which are of
physical interest. Leaving the problem of the membrane with boundary
edge held fixed for exereise 12(a) at the end of this chapter, weChiisider
here the problem of the membrane whose boundary edge is held-glastically
to the curve ' in the 2y plane. We have, accordingly, by

dw o (& 7]
T T + pw = 0 on €, .\ (97)

with p = p(s) a given positive funetion, by 78).\\01' 9-53(c),

As in the vibrating-string problem handled'(i\ 7-5, detcrmination of the
general solution is based upon the prior cofaplete solution of the associated
cigenvalue-eigenfunction probiem ; thetis, we have at our digposal the
totality of the eigenvalues and orthgﬁx)fmal eigenfunetions of the system

V3% +Andn = 0 in D, (98)
Dbt
T30 T Pén=0  onC, {99)
¢ {on
L\
form = _l! 2, 33 - - oo/ (If any given eigenvalue is degencrate, it appears
consecutively in $hetist Ay, Ay, . . . y Mmy . . . a number of times equal

to the nurber of “independent eigenfunctions associated with it. We
suppose that(the eigenvaiues are numbered in ascending order, so that
Am £ hygllor all m.)

At tliis,'point we weaken the restrictions upon the solution w = w(zyl)
of EQQ).. which are set forth in 9-3(a). 1t is not necessary for further pur-
podes to keep the restriction of continuity of the partial derivatives s
anc} Wy everywhere in D: We allow & finite number of isolated points at
“.rhm_h., and a fintte number of smooth arcs across which, finite discon-
unwities of w, and w, may oceur. Since the conditions for expanding

w and , for any ¢, as infinite gseries of eigenfunctions, according to 9-6(<),
are clearly met, we may write

o

wiz,yt) = Z Cnmm (2,7, wizyt) = Z dm§m(x,y), (100)

m=1 me1
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where, according to (94),

tm = Cu(l) = f f cpmt dr dy, dn = da{l) = ff eoath dr dy.  (101)
D Iy

From (101), with the rule for differentiating an integral, it follows that
dn = 6n; the second of (100) therefore reads

o

bEpt) = ) Enbalzy) (102),

m=1

—the term-by-term time derivative of the first of (100). Furj;}(é?';‘.\we
have N\

P
% o < 3

_ Om - Odm, (O
We = 2 Cm -a“; Wy = 2 Cim ay”‘\ (103)

m=1 m=1

A\
According to (63) of 9-5(b) Hamilton’s princip@ g}lls for the extremiza-
tion of the integral

N Y

I=4% j:g {ff[awﬂ — 7w + w,;)’}&x dy — fo Pt ds} dt  (104)
5 ,.}:4
by the funetion w(x,y,t) which desctibes the actual membrane motion,
with respect to functions w whj,oﬁ fit the actual membrane configurations
att ={jand i = {,. Into ~0ﬁ\é‘~f§mtor of each term of (104) we substifute
from (102), (103}, and (10(}, as appropriate:

® \Y;
3 )
I'=3 2 ./; l\%ﬁaq)mw dz dy
m=l ' I
O\
' ddm 3 bm
[r[f(w; :x + 1w, ;;)d:c dy + fc P ds]] gt (105}
D

‘_Qm"
O
V
We transform the second integral over D according to Green’s theorem
{23) of 2-13 to obtain

6 gqu) _f P _ff .
!f(w; Fys + 1wy o de dy = cw%ds wv i, dz dy.
B

Thus (105) beeomes, since the coefficient of é. in (105) i8 dm = én,
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according to (101),

]_ - [ : a¢m

[ = _Ef [{:3‘ + tn [1- WV, dedy — | w|7- + pén ds]] df
9 N o an
mel D

o

- b i
3 E / |c§, — Cahm [faq‘)mw dx dy] ti = & E [ (&5 — Ancl)di,
Ly 4
m=1 L

m=1
(106)
Q"

with the aid of (98), (99), and finally the first of (101).
Thus the extremization of (104) is reduced to the extremization of the
final form of (106) with respect to the infinite set of quarlilics ¢, e,

- s €my . . ., Which are prescribed at { = {, and ¢ =(£g}"z);cc0rding to
the requirements of Hamilton’s principle. This extrofizalion problem
is worked out in 7-5(a), with the result N

m = A COS A/ Ant + B, sin /A, ¢ (=123 ..),
I

where A, and B,, are arbitrary constants. A‘%{éﬂrding Lo (100, therefore,
we have for the general solution of the mémbrane problem characterized

analytically by (96) and (97) o\

~

w(zy,t) = 2 (Am cOS N A £ -+ Bo sin v/ Dom(a,y).  (107)
o "

Evaluation of the coefficitnts A, B, through the imposition of initial
(¢ = 0) conditions is left<for end-chapter exercise 12(c).

{0) The result (107) justifies the analysis of any given state of vibra-
tion of a membrane'as a linear superposition of vibrations, each of which
is characterizedjﬁy’a single frequency. Comparison with (79) and (80)
of 9-5(d) sh withat each term of (107) corresponds Lo one of the single-
frequency,'nﬁ\@ es of vibration which the membrane is capable of executing.

9-8. ;’I:h’é Rectangular Membrane of Uniform Density

(8)/The problem of determining the eigenvalues and corresponding
eigenfunctions for a given membrane is in general tractable only if the
boundary curve € is so shaped and the density function ¢ so constituted
that the differential equation

V% + Argp = 0 (108)

lends iself to a separation of variables, First, we must choose a coor-
dinate system in which the entire boundary eurve is describable through
constant values of the coordinate variables. Tn the case of a rectangle
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of sides @ and b, for example, we use the cartesian system whose origin is
at one of the corners and along whose positive axes two sides of the rec-
tangle extend.  In this cuse the boundary curve is deseribable by the
sequence of constant values y = 0,2 = @,y = b, x = 0. For a circular
membrane ol radius ¢, the equation of the boundary is simply r = cin a
system of polar coordinates whose origin is at the center of the cirele.

Once a coordinate system is determined to suit the boundary needs,
the next tequirement is that the partial differential equation (108)
separate into two erdinary differential equatious through substitubigns
into it of a product funetion—a function of one of the coordinate variables
times a furction of the other. Separation is effected when the g@(ﬁ‘at\ion
is put into « form such that each of its two members depends respectively
on one or the other, alone, of the independent variables.  TIn'this event
the two mewmbers must equal an undetermined consts{y%'\ﬁfhereby two
ordinary differcntial equations result. \ :

It may happen that the form of the function gr(gs,such as to make a
sepuration of variables impossible; but even if 448 a constant, there is
only = limitedd number of coordinate systends n which separation may
occur. In the event of inseparability the quést for a preeise solution of
the problem is in general hopeless, so .;t}i;at- methods of approximation
must be resorted to.  Discussion of‘a'ir'l’ethod of approximation is found
in 9-13 below. NP

(D) In this section we illust@t-e the precise solution of a membrane
eigenvalue-eigenfunction roblem with the rectangular membrane of
uniform density. If the‘r&'\fangle gide lengths are @ and b, we set up &
cartesian coordinate system so that the membrane is bounded by x = 0,
z=a,y =0,y = W\ For the fixed-edge membrane, which we consider

first, the boundz@;@}énditiﬁﬂs thus read
qb&y) = ¢lay) = 0, &(z,0) = ¢(z,b) = 0. (10%)
Into (LQS)}’With o = oo, a constant, we substitute the produet function

¢y = X (@)Y W) (L10)

~—whereby the conditions (109) become
X = X(a) =0, Y{0) =Y(®) =0 (111)
Since it follows from (110) that V¢ = X"Y + X V" (where primes indi-

cate differentiation with respect to the appropriate independent variable),
(108) becomes +(X"'Y + XY'') + AeuX¥ =0, or

2‘7)_(” Ay YT; (112)
:
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Since the left-hand member of (112) is a function of » alone while the
right-hand is independent of «, it follows that each member is g constant,
which we denote by 8. Thus (112) results in the two ordinary equations

&X dry

&x—2+aX=0, R?+|BY:0: (113)

where we introduce the constant @ = (Ary/7) — 8, so that

A= (a+8). Qg
oy .
)
The permissible values of & and B—and thereby the eigeuga{u\és of —
are determined directly, A\
For « < 0 the solutions of the first of (113) are reﬁl"exponentia}s,
which cannot be combined so as to vanish both atla*= 0 and 2 = 4.
Thus we have « 2 0, with the solution \/

X() = Ccosv/az+ D gi;{wa z. (115)
Imposing the first pair of conditions (1 11:){;&; obtain
X0 =€=0, X@RDsinvaa <o,
whence it follows that /& ¢ = gr'%i’;f%:fith M an integer, or
mArd

= —g\t (mo=123, .. ); (116)

N
we ignore the trivialhsolution which arises it D = 0 or a =0. The
corresponding funqt\it‘qn“é. (115) are, for each n,

P sinﬂ:-? (m =123 ...

- =10 \‘\ -
In similar fashion we obtain for the functions Y (y) which satisfy the
secq;kd?gét of conditions (111)
AV | k
Yy = E, Sln-{i—y (k = 1,2,3, .. ‘),

with the corresponding valyes

2
s=BT aoias ). (117)

From (1186), (1 17), and (114} we have for the eigenvalues of A

Tt fm? fe
A = o (a2 + .’F) (mk =123 independently), (118}
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with the corresponding eigenfunctions

i = Py sin ™7 gip ©7Y, (119)
a b
for mk =1, 2, 3, . . ., independently. The constants ¥ may be

determined by the requirements of normalization.

{¢) The attack upon the eigenvalue-eigenfunction problem for the free
membrane is handled in much the same way. We seek a solution of the
form (110}, but the boundary conditions (111} are here replaced by

X'(0) = X'{g) = 0, Y')=Y® =0 '\{i20)

For, the condition! (9¢/én} = 0on C reads, for the rectangle, (aq)jaxi’ =1
onz = 0,& = a and (3¢/dy) = 0ony = 0,y = b; (120} follexs directly.

Applying the first of (120} to (115), we obtain R?,
— _ P\
X'(0) =~/aD =0, X =—Valsinvaa=10,
whenee +/« ¢ = ma, with m an integer, or \x\\
= m;:" (m = 0;1:,“2;" .

X N

Similarly, we find 8 = (k%/b%), so‘t;h;a.fﬁ” the eigenvalues of A are, accord-
ing to (114}, N

(Y independently), (121
Amie = o \&? + B \\(m,k =0,1,2, . . ., independently), (121)
with the c-orrespondi‘ng:éigenfunctions
O\ J k
NY i = Fo 0B MTE oy Y. {122)

AN a b

2 8

It is sigdificant that we may choose the values m = O0and k= 0in
the freecedge problem, whereas these values must be ignored in the fixed-
edge ¢tage. The reason for the difference is made clear on comparison of
the eigenfunctions {119) and (122): Setting m or % equal to zero in {119)
vields the trivial solution ¢ = 0, while setting m, &, or both, equal to
210 in (122) leaves us with a nontrivial solution—a constant in the
extreme case m = & = 0. L

(@) Tt is obvious from (119) and (122) that an eigenvalue exhibits
degeneracy, defined above in 9-6(a), if there exist four inu::gers m, k,
w, k' (m % m!, k 5 k) such that A = Awi. It 18 immediately seen

T Bee 9-5{e).
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from the form of (118) and (i21) that a membrane for which the ratip
(a/b) is rational possesses an infinite number of degenerate eigenvalyes,
The most apparent type of degeneracy arises in the case of the square
membrane, @ = b. Merce interchange of (unequal) values of m and &
leads to a new eigenfunction without altering the cigenvulue.

If {(a/b) is irrational, every cigenvalue for the reetangular membrane i
nondegencrate.

9-9. The Minimum Characterization of the Membrane Eigenvalues

(a) We proceed to prove the following theorem concerning the eiEen-
values of the vibrating-membrane problem associated with ufeomain
D, the density function ¢, the elastic constant r, and having{tyboundary
edge either held fixed, or elastically bound,! \\lth the IJIILmeu‘ function p,
to the boundary curve C:

We arrange the totality of the cigenvalucs in M}( .1~:(11dmg order
MEME - 2 E - -, with each degenerd¥® cigenvulue appear-
ing consecutively in the list a numbe1 of Lime\\(fquu,l to the number of
independent eigenfunctions associated m‘rh \t The kth eigenvalue ko5

the minimum of the quoniity PN\
= [f (o2 + ai@ndy + [ po® ds (123)
D ~:‘ - !
with respect fo those functions‘fﬁ ﬁiﬁz:ch satisfy the normolization condition
‘T cpdrdy = 1 (124)
S Df
and the {k — 1) ort}\wfgo}mh'ty relations
[aprsdsay =0 m=12, ... -, (125)
N
where ¢,,, im = 1L,23, . . .) is the eigenfunction which satisfies

N
NN TVt Mok =0 inD (=123, ...) (126)
451

¢m + P = on ( (m =123, ...). (127)

Further, the_ functions ¢ eligible for the minimization must be continuous
everywhere in D and have partial derivatives é. and ¢, which are continu-
ous, except possibly for a finite number of isolated points at which, and 2

! “ Elastically bound ” includes the case of the free edge, with the binding funetion

ld}‘:nt‘muy zero on €. The theorem of this section also includes the mixed case 1
which part of the boundary edge is held fixed, part held elastically (or frec}.
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finite number of smooth arcs across which, finite discontinuities of the
derivatives may occur. . : ' _

For the membrane with fixed boundary edge the additional restriction
¢ = 0 on C must be imposed on the eligible functions; in this -case the
boundary line integral of (123) clearly drops out. Also, the condition
{(127) upon the cigenfunctions ¢, appearing in (123) is replaced by
¢m = 0 on €. {No boundary restrictions arc imposed upon the eligible
functions ¢ if the membrane edge is held elastically.}

The minimum e of I under the stated restrictions is achieved uhen\
& = . '

(&) The proof of the theorem stated in (@) runs along the line, Qf\the
corresponding proof of the minimum character of the vibratirtgstring
eigenvalucs carried out in 7-4(c}). We use the eig(-:nfun{;ti@fé of the
system (126) and {127) to expand the eligible functions éhecording to

the expansion theorem of 9-6(d): '.\‘\‘ '
P = Z cm'}bm(:f,y) (Cm = ffﬂ'ﬁ’;@}&x dy): (128)
me= D~N'x\ .
- 6 K% Om . 129
¢y = 2 Cix "‘a_x"! V‘Py "T 2 L ay 3 : ( )
me1 SN mel :

(127} is replaced by ¢, = 0 on -0 if'tﬁe_condition ¢ = 0 on C is imposed
(the fixed-edge case). Accop:liﬁg to the parenthetic part of (128) the
orthogonality conditions (‘,{&5') ‘take the form '

czl.v:—.a Gy = * ' = -1 = 0. (130)

condition &
Q
AN

Substituting (128),{”0:1'\ one factor of (124), we have for the normalization

i . f[ comd da dy = Z ¢ =1, (131)
m=1 pi] m

with the'zid of the parenthetic part of (128).’
We substitute the appropriate member of (128), (129) for one factor
of each term of (123) to obtain

2 Con ['r ff qb._,%—%’" + &y 9(,%“) dr dy + fc PdPPm ds]
7] B .

m=1

o)
It

)

2 Lo [—¢ff§?2¢m dz dy -+ fc & (T%tﬂ + p¢m) ds]; {132}
3

m=l
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with the aid of Green’s theorem (23) of 2-13. From (127)—or, in the
fixed-edge case, since ¢ = 0 on C—it follows that the line integral of
(132} vanishes for each m. In the double integral of (132) we use (126)
and so obtain

I= ”21 lem_gdqﬁmcb dx dy = ,,21 CiNm, (133)

according to the parenthetic part of (128).

With the aid of (130) and (131) we rewrite (133) as O
- O\
=M+ ) 0w — M) S
mek+1 (‘.’}"
Since, for m > k, hm 2 Az, this result implies M'\{
12 N\ (135)
IRV

Equality is achieved 1f—but not necessal'ib%\:eﬁly f—er = L and ¢p = 0
for m = k, whereby the imposed conditianis*(130) and (131) are fulfilled.
But assignment of this set of coefﬁqieilté' implies ¢ = ¢, according to
(128), so that the final part of the thedrem of (a) is proved.

Asmide from the trivial alternafqﬁté'ck = —1 the “not necessarily only
if” of the preceding paragraph is added because of the possibility of
degeneracy. If it happegsithat Ay = My = + - - = Aepw, it follows

from (134) that the eql{é‘litj’ sign prevails in (135) if any one of the
coefficients ci, ¢y, . A\ s ¢z+v 18 ehosen equal to unity while every other
&n 18 set equal to Z60."

{¢) The theory{u proved in (b) above provides us with a fresh statement
of the membrane’eigenvalue-eigenfunction problem:

" Given tl}eﬁsﬁpression I of (123) and the density function «, we consider
the elassyof functions ¢ defined in D with the regularity properties stated
and which satisfy the normalization condition (124) ; only if we deal with
the\ﬁked-edge membrane do we exclude from the class those functions
for which ¢ > 0 on €. The class of functions so defined we call Ky—the
class of functions eligible for the first minimization of 7. The minimum
of I with respeet to K, is the lowest eigenvalue \; associated with the
membrane; a function in X 1 which renders 7 equal {0 A; is the associated
eigenfunction ¢,.

We define the class Ko—the class of funetions ¢ eligible for the second
minimization—by removing from K, ail functions ¢ which de not satisfy
the condition (125) for m = 1; that is, K, includes only functions which
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are in Ky and which are orthogonal t6 ¢; in D with respect to 5. The
minimum of / with respect to K. is the second eigenvalue Ay} a function
in Ky which renders I equal to Xs is ¢s, the associated eigenfunction.
The process continues indefinitely: The class Ki—the class of functions
¢ eligible for the kth minimization of I—includes all funetions in K,_,
(snd thercfore in Ky, Ko, . . ., K;_») which are orthogonal t0 ¢;, ¢,
. $r-1. The minimum of I with respect to K is the kth eigenvalue
M a funcetion! in Ky which renders T equal to »; is the associated eigen-
function ..
N\
9-10. Consequences of the Minimum Characterization of the Membrane

N

Eigenvaiues oA

As a preliminary to the maximum-minimum characterization of the
membrane eigenvalues presented in 9-11 following, we draw&ome simple
inferences from the minimum chargeterization given ing99¢); and, of
possibly greater importance, we point out, with regard fo the minimum
characterization, & fundamental limitation which\is overcome only
through the vastly more powerful maximum-mipimum principle. Since
every consequence of the minimum principled tan also be derived from
the maximum-minimurm, only a few results are treated in this section.

{a} Tt is useful here and in following seg’eions of this chapter to intro-
duce the concept of a membrane systemy which we define as follows:

A membrane system consists of a¥nembrane eigenvalue-eigenfunction
problem in which we are given shéwdomain D (and thus its boundary C),
the tension constant 1, the hifl?ﬁng function p, the density function o,
and the class of funetions Kpwhich includes those and enly those func-
tions ¢ cligible for compétition in the first minimization of the guantity J
of (123). (The orthpgésality conditions (125} are clearly not included in
the determination 6f% membrane system.) Xxamples follow:

One membrank system Sx is defined, say, by a rectangular region ol
given dimensiéis, with « definite tension constant and a definite constant
density, a binding function identically zero, and a class K of normalized
functipfis g which satisfy no special conditions other than the .standar.d
regulariéy conditions stated in (@) above, This system, clearly, is assaci-
ated with the rectangular free membrane of constant density co.nmde.red
above in 9-8(c). If we now take a membrane which has the identical
physical characteristios of the foregoing, with the exception that we .hold
its boundary edge fixed in the equilibrium plane, we ha?'e to d.eal WJ..th a
second membrane systern Sy: rectangular region of given dimensgions,

1 We sav “a function’ rather than “the function’” because of the possibility of
degenerncy [see the closing paragraph of (6)1.
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definite tension constant, definite constant density, binding function?
identically zero, K{¥' including regular normalized functions ¢ which
vanish en rectangle perimeter. A third system Sz muy be formed from
the second by removing from the class KiY all funetions ¢ for which
¢ # 0 at the intersection of the diagonals of the rectungle. Physically,
the third system is associated with the fixed-boundiry membrane of the
second, but with an additional constraint which holds the center point at
rest in the equilibrium plane.

A membrane system S, is defined as naorrower than a system Suif S,
and Sz have in common the first four of the defining charnclenisties®ha
system—namely, D, 7, p, and ¢—and if every function of the cless
K (the class Ky for Sa) is included in the class A" (helctass K,
for Sg), bul not vice versa. For example, of the systems of ghe-preceding
paragraph, Sz is narcower than Sy, Sy is narrower thaf Sy, and Sz is
narrower than Sx. (This is & simple instance of the obv@Gus property of
transitivity for the “narrower” relation: If Sais fawower than Sp and
Sp is narrower than Sg, then Sy is narrower thapg%')

(i) We prove directly that if Si 7¢ narrowa’ Uhan, S, the lowest eigen-
value N of Sy is nol less than N2 the lowksd eigenvnlue of Np: Fov any
given ¢ the quaniity [ of (123}, whose m:in’imum is sought, iz the same
for both systems. A funetion ¢* whith minimizes / with respeet to
K is also in K$*; hence the mi;ﬁ’rﬁum NP of T with respeet to Ki% s
less than or equal to its minimum\® with respeet to K.

Since, secording to 9-4{z) ahd*0-5(d), the successive frequencies of the
single-frequeney modes of Mbration of which a membrane is capable® are
proportional to the reqpés\ﬁi\re square roots of the eigenvalues of A, the
theorem (i) may be rewdrded : If S, is narrower than Sy, the fundamental
frequency of the membrane associated with S, is no lower than that of
the membrane &8yociated with Ss.  Applied to the three systems Sx, Sy,
Sz defined ghewe, (i) iraplies that the fundamental frequency of the free
membrane\i¥ no higher than that of the same membrane with fixed
bound@{y{ ‘which is no higher than that of the same fixed-boundary mem-
brafigyhaving its center point constrained {o remain jn the ecuilibrium
plane. This result is a special case of a more general conscquence of (i)

1 To this point the binding function p(s) is not defined for the membrane whose
bf)undary edge is held fixed in the equilibrium planc. From the physical point of
view we could regurd the fixed boundary to be the limiting case of the clastieally held
houndary a8 p— w. [t is more convenieut for sur parposes, however, to define p
s _compl(?tely arbitrary in the fixed-houndary eigenvalue-cigenfunction probleim.
This definition iz valid bheesuse the linc integral of (123}, the only quantity in which »
appoars, vanishes if ¢ = Qen €. Inthe ease 2t hand, p = [is the most useful cholce.

2 The so-called natural vibration frequencies, the lowest of whieh iz ealled the
Tundamental.
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The addition of constraints to a given membrane (such as holding it
fixed at corfain points or along certain arcs, ete.) cannct lower its funda-
mental vibration frequency.

Conversely, the removal of constraints from a given membrane cannot
raige 1ts fundamental frequency. An important application of this fact
lies in considering the effect of introducing s slit into & membrane surface.
Analytically, a slit along a given arc admits into the class K, functions
which are discontinuous across the are, thus giving rise to a system less
narrow than that assoclated with the unmutilated membrane: The
introduction of a slit cannot increase the fundamental frequency «of a
memthranc. AN

(b) We supposc thal two membrane systems 5, and S hax{e\iﬁ“com—
mon the characteristics D, 7, o, and K, but the respective binding func-
tions ps and ps are not nceessarily equal. We prove“.tl’ié” following
theorem: RS 7

i) If pa = pu, the lowesi eigenvalue X of 84 tsnbldess than N, the
lowest efgenvalue of Sa. SO

If, in {123) of 9-9(a), we write p = pa, is'aritten I, if we write
p = ps, I 1s written I Since ps = ps, itsfellows that {4 = Ip for any
given function ¢ in K, {common to the twe.dystems), If the minimum
Mo of I, with respect to K, is achieved “through ¢ = ¢i®, and if I} is
the value of [y when ¢ = ¢, we htz{e ME = T =P

In physical terms (ii) implies that the tightening of the agency which
binds the boundary edge elaskic“ally (.., the increasc of p) may raise,
but cannot lower, the fundafméntal frequency of a given membrane.

(¢) We consider the twOunembrane systems Sx and Sz which have in
common the charnclerishics D, + and p, but for which the respective
density functions oiNfnd o are not identically equal in D. The mem-
hers of the cligibles lasses K% and Ki®, we suppose, are required to
satisfy the sarhé?&hditioné of_régu]ar_ity and the same set of special con-~
ditions (31_19]1‘}5 vanishing at certain points, or along ecrtain arcs, ete.)
which maysbe imposed. The classes K{* and K {7, clearly, arc not in
gene&ﬂ‘idéntical, because of the difference in the normalization which
spring®from the nonidentity of 74 and a». Any function ¢4 in K{* can
be converted, however, fo membership in K® simply through being
multiplied by a snitable eonstant. For if

Jorsints o

o . - : s KB
(da/ch is clearly a member of K. Similarly, any function ¢z11 K{P ean
be converted to membership in K{*' in the same manmer.
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We prove the following theorem concerning two systems satisfying the
; relationship stated in the preceding paragraph:

(iii) If o4 = o5 in D, the lowest eigenvalue MY of 84 ¢s not less than AB
the lowest eigenvalue of Sp. Tt follows from the hypothesis that

¢t = ff“B¢i de dy = ffﬂ‘ﬁ dedy =1, (136]
3 I

where ¢, is any member of K{* and ¢ is a positive constant, in geners!
different for different members of K{*, defined by the lcft-hand equa}i(m
of (136). We therefore conelude from (136) and the result abiove that
for any member ¢4 of K there is a corresponding membe (¢./c) of
Ki®, with ¢ 2 1. It accordingly follows that, if any, metber ¢, of
K5 renders I of (123) equal to I,, there exists a menibcr (¢pa/c} of
K which renders I equal to Is, where ¢

N\

Ip = {%I.{ = L;,"l\\f
according to (136). From this we have .thxat the minimum of I with
respect to K is less than or equal todts minimum with respect to Ki¥,
and theorem (lii} is proved. N

The physical implication of (ili)is that an increase in the density of a
membrane, without other change, may lower, but cannot, raise, the funda-
mental vibration frequency.}

(@) In the statement aﬁ the three theorems of this section no mention
whatever is made cohcerhing any but the lowest eigenvalue of o given
system. What aboutthe higher eigenvalues? We may ask, for example:
If 8. is narrower «t}ﬁn Ss, what can we say concerning the relative magni-
tudes of the .anzh\eigenvalue A® of S, and the kth eigenvalue A of Ss,
for kb = 2?§Bbes there exist a relation A < A\® which holds, accord-
ing to thig:orem (i), for k = 1?7 The answer is affirmative, but it is not
given/by* the minimum principle employed in the proof of theorem (i);
itloes; however, follow from the maximum-minimum principle of 9-11
below.

It is not difficult to see why the minimum characterization of the
eigenvalues fails to provide information concerning the relative magni-
tudes of the higher eigenvalues of different systems. Reference fto 9-9(c)
reveals the source of the limitation in the following way:

We suppose 8, narrower than Sz 50 that K{® includes every function
¢ in Ki¥.  The minimum A% of T of (123) with respect to K{* is achieved
With ¢ = ¢{*; the minimum A\® of T with respect to K{® is achieved with
¢ = ¢{”, whieh is not in general the same as ¢*. The class K&, with
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respect to which A\* is the minimum of 7, is formed by removing from
Ki# all functions ¢ which do not satisfy

fquﬁi““ﬁ drdy = 0;
0o

the corresponding class K§¥ iz formed by remeving from K{® all fune-
tions ¢ which do not satisfy

ffaqb‘lmtb dedy =0,
)

From this limited information concerning the formation of K§ and(K,
(4) ]

we are in no position to know whether every ¢ of K5 is a member of

K, or vice versa. In faet, neither instance of all-inclusion i IS “generally

exhibited.
Since the proof that X% = A® depends upon the fadt ’chat every ¢ in

K{#® is a member of K‘B’ lack of corresponding infortdtion concerning
K and K§® makes it 1mpobsuble to infer from (le finimum principle
2 similar relationship between M and M™. If avelear that this limita-
tion oxtends to the higher eigenvalues 2g¥ and &, for k > 2.

9-11. The Maximum-Minimum Char&ctenzatmn of the Membrane
Eigenvalues! N
{e} We fix our attention upon &single membrane system 8, character-

ized by the domain D (with bgu})dary ("), the constant 7, the functions
a(z,y) and p{s), and the claSs\‘KI of functions ¢ eligible for the first mini-

mization of
15 f[ @2+ sDdedy + [, 06" ds; (137)
2

all ¢ in K,y sa.tt}e?ir the normalization condition

\ D" [[oo?duay = 1. (138)
b

We form the clags K(U,) of functions ¢ (k = 2) by temoving from K;
all members which do not satisfy the (4 — 1) or thogonality relationships

[[rupdady=0 G=12 .. k-1 (139)
F22

1The important ideas in this and the following gections apparently originate with
Courant {2). See also Courant-Hilbert, Chap. 6.
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where the functions w(z,), wa(®,y), . - - » We1{Z,y) ave compleiely arbi-
trary in D to within continuity, except for a finite number of smooth ares
across which finite discontinuities may oeeur. We denote the set of arhi-
trary functions wui, uz, . . ., ¥, in aggregate, by the single symbol U,

We now prove that the minimum of T with respeet to funciions ¢ in
K(Uy) is less than or equal to the kth olgenvalue x; of the system 8
to do this we merely show that there is at least one ¢ in K({7) which
renders 7 less than or equal to x.: The linear combination

'\
¢ = i Con e (c,,. =ffar¢>mq5 da (if_.f) ’.\:\(140]
1 ] :

m= 7"\

of the first % orthonormal cigenfunctions of the system & {3 ‘member of
K(Uy) if the coefficients €1, ¢a, . . . , ez satisfy the (& &1} conditions
. "\

imposed by (139), )

% w\J/

n ’:’\
E Cm ffﬂ'?{j P da dy = 0 GJ > .1}2;' PN ’?G - l)._, (141)
me=1 0 .st )
as well as the condition N
k| Ny
et = 1, (142}
=1

which results directly ffgha“$ubstituting (140) into (138). It is gasily
ghown that u system ofk%c — 1) linear homogeneous equations, such as
(141}, in k unknownaiibject to a normalization condition, such a8 (142),
always possesseg.%snlut-ion.‘ We may assume, therefore, that there is a
function ¢ of shédorm (140} which is a member of K(TUs).

We sul}g@i&\\:ﬁé (140) into (337) and, in the manner of achieving (133) in
8-9(b), weshow that

A

"

\‘}" k k-1
T= Y == 3 0w, (143)
wm=1 m=1

with the aid of (142). Since A, £ A for m <k, it follows from (143)
that 7 = X Thus the assertion that the mindmum of I with respect t0
K{(U3) is less thau or equal to A is proved.

Furthermore, from the statement of the minimum principle in 9-9(¢)
it is elear that the minimum of I with respect to K{(I7;) is precisely M
if the set U consists of the first (3 ~ 1) eigenfunctions ¢y, ¢z, - - -
¢r1-—that is, if % = ¢;for§ = 1,2, . ..,k — 1. TFor, in this event,

! ¥ee exercise 15 ab end of chapter,
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K(Uz) is identical with the class K; defined in 9-9(ej, with respect to
which the minimum of I is A.

Therefore, 1f we let I(Uy) denote the minimum of 7 with respect to
K(Uy), we have I(Ux) £ N, and the mazimum of T(U;) with respect to
all sots U7y 45 Ay, the Rih eigenvalue of the system 8. This maximum mini-
mum of I is achieved when Uy is the sel of the first (k — 1) eigenfunctions
Qsl; ¢"Z? ey ¢k—l Of S

Thus we may reformulate the membrane eigenvalue-eigenfunction
problem as follows: Given a set Up of arbitrary functions uy, s, . . . |
#y—1, we first minimize T of (137} with respect to those functions ¢ 1K,
which further satisfy the (& — 1} orthoegonality relations (139)s 3¥ith
respeet to the funetions ¢ in K(U;), that is. The minimum so,gé‘iﬁ\eved,
namely (7)), depends in general upon the particular set UL which is
employed. We next proceed to maximize I(U;) with gedpect fo Us;
that is, we form the minimum [{U}) for each of all possible choices of
sets Uy, and we select from among these minima theNabgest. The maxi-
mum of 7{{7;} so achieved is the kth cigenvalue M of\bhe system S, accord-
ing to the maximum-minimum principle proved/directly above.

(It iz clear that the maximum-minimum formulation of the membranc
eigenvaluc-eigenfunction problem reduces o the minimum formulation
of 9-9(c) when k = 1~—that is, in the_ duest for the lowest eigenvalue Ay
For the get U, 1s an empty set, confgé,jhihg no functions whatever.)

In the paragraphs following, wedderive several consequences of the
maximum-minimum principles8eme of which are generalizations of the
theorems proved in 9-10. ¢ :

() We prove: N\

Theorem (i).  If the membrane system S is narrower' than the system
Sa, the hih eigenvaldde® of Ss is no less than NP, the kik eigenvalue of Ss.

By definition exery ¢ in K is a member of K{®. With the use of
any given se Cf}:ﬁhe formation of K (U3} involves removing from K{* a
subset of fufietions ¢—those which do not satisfy the (¢ — 1) orthogo-
nality con@ttions (139). In the formation of Kx(Us) the same subset is
removedlfrom K™ ; any additional funetions removed from K{® to form
Ko are not in K* to begin with, and therefore not in Ki(l7).
Thus every function in Ka(Uy) is a member of Kp(Us). It thus follows
that the minimum Zo(Us) of I of (137} with respect to Ka(Us) is not less
than 75(T7,), the minimum of I with respect to Kz(l3). If Uy is the
set~—the first (5 — 1) eigenfunctions of Sy—which maximizes £2(Us), we
have, according to the maximum-minimum principle,

NP = In(Up) £ 1a(U) 237
Theorem (i) is thus proved.
1 See the definition in 9-10{a).
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We may express (i) in terms of the numbers N4(\) and Na(h), where
Na(\) is defined as the number of eigenvalues of 84 which are less than
or equal to the number A, and Np(\) has the same meaning for S,:

Theorem (i'). If Sais narrower than Sz, il follows that N s(A) £ N().

(c) We prove:

Theorem (ii}. If the membrane systems Sa and Sa have 21 common the
characteristics D, 7, o, and K, but the respeetrve binding functions satisfy
the relation pa Z ps, then 2 Z AP, Or,

Theorem (i), Na(}) £ Na(r).

If in (137) above we write p = D4, J is written {4 if we write p, 2.,
T is written Tz Since ps = pe, 1t follows that 74 2 fy for wny piven
function ¢ in K(U;)—eommon to both systems— for any {7, @mployed,
By the argument of 9-10(b), it also follows that the respectiviminima of
T with respect to K(U;) satisfy the relation 7.(L7;) = [g0h). By the
argument of (b) above it follows that A 2 M widd>therefore that
NA0) £ Np(\). O

{d) We prove a third direct consequence of thévmaximum-minimum
principle: . :’.\\ g

Theorem (iti). The systems S, and Sy ¥ave in common the charac-
teristics D, r, and p; and the eligible clagses K wud K™ are required
to satisfy the same conditions of regularity and the sume st of special
conditions which may be imposedSMf o4 £ oa 0 1. then N 2 N7
OI‘, “’:’.

Theorem (iii’). N.(\) £ Mo,

We proceed to form theselass of functions K,(I/,} by removing from
Ki® all functions ¢ whish'\do not satisfy

[[oos&dsay =0 G=12, ... k-0 (144)
D"\'t\’..
With U, giw@, we form the set Vi such that its members ¢4, 22, - + - »
vr_y satisfy\the relations
\"\} :.\’ ' Taty = Tally in D (J =12, ... ,k — 1) (145)

With Vi thus established we form the elass Kz(V;) by removing from
K3 all funetions ¢ which fail to satisfy

ﬂaﬂm dedy =0  (j=12 ... k—1), (146)
which is identical with (144) because of (145).

In 9-16(c} it is shown that, if ¢ is any member of K{®, there is 2
corresponding member ($/c} in K{® where ¢ is 5 constant which may
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differ for different ¢, but where always
¢ = 1. (147)

1f and only if the formation of K.(Us) involves the removal of a given ¢
from K, the formation of Ks(Vy) involves the removal of the corre-
sponding (¢/¢) from K{”, because of the identity of (1468) with (144).
We therefore conclude that for each ¢ in K4(Us) there is a corresponding
(¢/cy in Ka(Vi).

Tenee if the minimum 7.(U) of T with respect K,(Uz} is achieved
when & = da, it follows from (137} that the function (¢4/c) in K (%)
renders I cqual to oA\

NS ¢

N\

I = L LU = L), R

hecause of (147). But since Is is not less than Is(V k);th'e'\mjnimum of I

with respect to Kz(Vi), we conclude from (148) that
N
(v £ L. {0 (149)

We now proceed to maximize T5(Ve) With’ré‘gpéct to V; and suppose that
the maximum AP is attained when Vi & “§%,—the set of the first {(k — 1}
evigenfunctions of Ss. If U, UOI‘TBSple:&SfO ¥ through (145), it follows
from (149) that

S O ESACAER

according to the maximxﬁx\—minimum principle. Theorema (iii) is thus
proved, and (iii’) folleps/directly.

The physical im: iesrtions in the theorems (i) to (iii) above are obvious
generalizations of( he inferences drawn in 9-10 from the corresponding
theorems (1) 1\\0;(&11) of that section. Tuller discussion is left for exercise
18 at the end of this chapter.

{e) ”'We\','c’o‘nsider the membrane system Ss which is characterized by
the domain Ds (with boundary Cu), the density function oz, the tension
constant r, the binding funetion p = 0, and the class K{® of functions ¢
which satisfy the standard regularity conditions*and ¢ = O on Cz. S5 18
associated, that is, with a given fixed-edge membrane.

A second system S, is characterized by the domain D4 whose bound-
ary Oy lies entirely in Ds or is, at most, in partial coincidence with Cs;
the density function ¢4 defined so that s = op in D4; the same tengion
constant = as for Sz; the binding funetion p = 0; and the class K{* of
functions ¢ which satisfy the standard regularity conditions and ¢ = 0

t Bee 0-9(a), just following equation {127).
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on Cys. Clearly, the membrane associated with 84 may be constructed
from the membrane of Ss by holding the latter fixed along an internal
closed non-self-intersecting curve Cy and ignoring whatever of Dg i3 left
over (see Fig. 9-2).

We characterize o third system
&, by the domain 1y {with bound-
ary Cg), the density function gs,
the tepsion constany ¢ (same a,q

above), the binding fnuetion p =
and the class Ki*7 ol o Lmdfu\lly
Cr regular funetions ¢ w high Whtisly
Fra. 9-2. d=0on "y ¢ =10 r)\ s, ¢ =
¢, =, = 0 Humu;}muf the portion
of Dy exterior to .. It is evideut that the scquene of cipenvalues

NAT WA CNAY, L of 8 s identical wfr_-h‘?the seruence A,
MAL L h“” .. of 85 For we have from JN87) of (1) above, if ¢
is any membm of K N

I= Tff ($. + ¢dp)dudy = ff (qb Fogiida dy;

also

[[a-w?da,dj ffo-m dx dy,

because ¢ = = \) between C.and s Since the functions in
K¢ satisfy the syreequivtements in s us do the members of K,

it follows that tho Sa and S, eigenvalue-eigenfunction problems ave
identical.

Comparigen-of the characteristics defining Sz and S shows, acvording
to the definition in 9-10(a), that 5, is narrower than Sz From theorem
(i) of {B) ahove, it therefore follows that MNP < A2 = . We thus
have\a proof of :

Theorera (iv).  The shrinking of the boundary, wilhout any other change,”
of a fixed-edge membrane may increase, bul cannol lower, each eigenvalue
M(E =123, ... Or

) - o .
Theorem (1v'). The shrinking may decrease, bul connot inceease, the

number N(N) of the fized-edge-membrane eigenvalues which are less than o7
equal {o any number \.

:.The “shrinking is effeeted in the way the system &4 is ereated above, on the
basis of Sy
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9-12. The Asymptotic Distribution of the Membrane Eigenvalues

In this section we derive, as 4 consequence of the maximum-minimum
principle, an asymptotic formula for the kth eigenvalue of a vibrating
membrane. The results we achieve are applicable to any membrane of
which the domain D is divisible into a finite number of congruent squares.
Finally, with the aid of theorem (iv} of the preceding seetion, we extend
our resulls to include the fixed-edge membrane of arbitrary shape. To
avoid an uninteresting morass of tedious detail, however, we merely siate
without proof the corresponding extension to the elastically bound for
free) membrane of arbitrary shape. X

(¢} We consider the membrane system S. characterized by the femain
D, the tension coustant 7, the binding function = 0, the dep&}ify [une-
tion o, and the eligible class K{* of standardly regular® funcgiens ¢ which
satisfy ¢ = 0 on the boundary € of D. A second systéf’Su has the
first four characteristics—I, 7, p, and ¢—in commmz"\?it-h S, but the
funclions ¢ in its eligible class K*? are required to vanish not only on €
but also along a given network of piecewise smogtharcs which subdivide
D, without gap or overlap, inlo a finite set of ;r;s}:}lidomains Dy D o L,
D, (sce Tig. 9-3).  Clearly Sy is narrower s’ 8,, so that the tth eigen-
value M2 of S is not less than ALY, thedith cigenvalue of Sa, according
Lo theorem (i) of 9-11(d). Or by the ﬁdliivalent theorem (i") of 9-11{%),

N N, (150)

where the two members of (zlf’fb) are respectively the numbers of eigen-
values of Su and S4 less than or cqual to a given number M.

We seek a second clapacterization of the cigenvalue A4 5n terms of
the eigenvalucs of thes systems Sa, Sa, . . ., S, defined as follows:
The systew 84, (7221,2, . . . ) is characterized by the domain D; (jth
subdomain of ’); the tension constant + {same as for S4, Sa), the density
function ¢ which coincides with o of Sa and Sa in Dy, arbitrary bind-
ing fllnc@&ﬁf}?, and the eligible class Ki*" of standardly regular funections
¢ whithwhnish on the boundary C; of D;. We prove now that every
cigunkdile of 8. is an eigenvalue of onc of the systems Su; and, conversely,
that every eigenvaluc of each S4; is an eigenvalue of S

If A7 is an eigrnvalue of Su and ¢y is the gorresponding eigenfunciion,
we have, aceording to (126) of 9-9(a),

Vigs + Mo = 0 in D, (151)
and thercfore in each D; (j = 1,2, . . . ;). Since ¢ is not identically

! Bee 9-9(a), just following equation {127},
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" gero, there s at least one subdomain-—say Di—1in which it is not identi-
cally zero; and since ¢ is 2 member of K, ¢i vanishes on the boundary
C. of Di 'The function ¢, defined as identical with ¢ 11 D; and {denti-
cally zero outside Dy, is thercfore the eigenfunction associnted with the
cigenvalue A of 85, For, according to (151}, we have

92 4+ AW eel = 0 in 7

and ¢ = 0 on C; That is, A §g an eigenvalue (in geperal not\the
kth) of Sa.

If 2% is any cigenvalue, ¢S4, and
¢* iz the correspondinespigénfunc-
tion, we have thai ()\"“,c\;ﬁk) also con-
stitutes an cigenvade-tigenfunction
pair of the system S.. provided we
extend the dbfliition of % by moans
of ¢* = PyNidentically, outside D
For wehuve

O vee* + vog® =0 (152)

Fig, 4-3, ™ .
I Dy; and, with the extended defi-

nition of ¢*, equation {152} holgiéﬂé’lso in D, with ¢* = 0 on (.

If no two systems Si, Sa; A 2 1) have an eigenvalue in common, we
em}nludq from the preceding two paragraphs that the list of cigenvalues
MO, NG, L WA of Sa may be formed by wwriling down the
aggregate of the eigenyblues of all the systems Say Sty . - ., Sa, and arrang-
ing them in ascendiggorder. We now show that the same statement holds
even if several of $he systems S,, have in common any number of eigen-
values: Let gsyslems of the Si-—which, for the sake of simplicity, we sup-
pose to besSa), Sa, . . ., 84 (s = r)—have in common any eigenvalue
A", anddei'the corresponding eigenfunction in 84, be ¢ (j = 1,2, . .o Sk
We aXtend the definition of ¢f by meansof ¢f = 0, identically, outside Dj.
Aeegrding to the preceding paragraph, A* is also an eigenvalue of Sa cor
responding to the s eigenfunctions ¢F, ¢, . . . , ¢ (with the extended
definitions). 8ince the extended ¢F, ¢f, . . . , ¢* are linsarly independ-
ent,! the eigenvalue A* is at least? s-fold degonerate in S« and thus appeals
consecutively at least s times in the list A%, 2, .. ., MY
We therefore conclude that the italicized statement above holds in all
cases.

If N4(M) is the number of eigenvalues of Se (3=12, ... ,r) less

! F‘or no two are different from zero at any point of D,
? ‘At least” hecause A* may he degenerate in any or all of Say, Sap « « - » Bdv
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than or equal to A, and N4(M) is the eorresponding number for 8.4, the
above result is equivalent to writing

Nao) = NaM) + Na) + - - + NV, (153)
From {1507 it therefore follows that
Na(N) -+ Noh) + - 0 4 N () £ N, (154}

where Va(A) upplies to the original fixed-edge membrane bounded by .

(b) Holding in altention the membrane systems S, Ss, Sa, . . . S 4,
defined in (@) above, we consider also the system S characterized bx'the
same 1), 7, o, and p (= 0 identically) as 84 but having a clagl K™ of
eligible functions ¢ which satisfy no restrictions in D or on 1 &xcept for
standard regularity. It is clear that S is narrower than S5 and there-
fore, by theorem (i") of 9-11(b), that D

o\

Na(Z) £ Nas(0), $ (155)

where Nx{\) is the number of eigenvalues of SB\}ess than or equal to X,
and N (N} is similarly defined In (a). o\

We next define the system Sp, charactezed by the same 0, 7, ¢, and
7 as in S, and Sg but which has the «ligible elass K& of functmns &
which are permitted to exhibit ﬁmbe \discontinuities across each are of
the network which subdivides D gnto the subdomains Dy, Ds, . . . , D—
the same set of subdivisions use(i’in the definition of 84 in (a). (See
Fig. 9-3.)¢ Cleatly, Sz is naj:rower than Sg, since every ¢ in K{® isa
member of K, w hile ¢ latter contains discontinuous functions as well.
We therefore have, from theorem (i') of 9-11(b}, that

NOT N £ NaOV. (156)

Finally, wey ﬂeﬁne the r systems Sz, Sz, . . ., Sz—the frec-cdge
eounterpar‘g\f Say Say .+ o ., Sa, of (aj—ax follows: The system
Ss (j = 42, . ¥} is characterized by the domain D, the tension

COHStant\rr (same as for S, ete.), the density function ¢ which coincides
withhg) of Sy, ete., in D;, binding function p = 0, identically, and the
aligible clage K9 of functions ¢ which satisfy standard regularity con-
ditions and no other special requirements. With point-by-point corre-
spondence of details we may use the method of deriving (153) in {(a} above -
to prove also that

No() = No, () + Na) + -+ + Na(d) (157)

iTp }Jﬂrely realizable phys}cal tertmnsy, 8y has to do with the free«edge membrane
associated with S5 after it has been sliced into » Tree-edge membranes in the domains
Dy B., ..., D,



180 CALCULUS OF VARIATIONS [§0-12

—with the single exception that we must replace the boundary condition
¢ = 0 in the proof above with the boundary condition {de/dn) = 0 {or
the present proof. This fact requires speciul discussion:

From (127} of 9-9(a) it follows that every eigenfunction ¢ of 84 must
satisfv (8p/0n) = 0 on the boundary € of Dy sinee p = O in the definitiog

of Sg; (j = 1,2, . . . ;7). Thus a preliminary requivement. for the proof
of (157) is that the eigenfunction ¢, of Sw ulso suiisfy (3¢:/n) = 0 on
eachof €, Cy, . . . ,Cpforevery kb = 1,2,3, . . .. The proof of this

fact depends cssentially upon the “ep process” ol extremizing N

I= fff(dai + ¢}dx dy Oy
. :
with respect to those functions ¢ in K" -which rnuy,egfmbit finite dis-

continuities across those portions of 0y, (7, . . . . .’,\.ﬁﬂiirh do not eoin-
cide with the boundary €' of the whole of D--whiehsitisly the orthogo-

nality conditions Y
‘..:\ @
ffﬁ%fb drdy =0 fm =420 .. &k — 1).
3 \

"
~
N
X N

The proof, which is quite straightfgj’i‘;{trd, is left, for end-chapter exercise
20, which is presented with an ample supply of guiding hints,

We may therefore accept thiewalidity of (157), which we combine with
(156, (155), and (154) t{é@,}iieve the important result

r

Ns(\) < Z N\ (158)

i=1

1A

> MER) s Ny
=AY

:"\:$~
(¢} In (l'l'g,l\’c')f 9-8(b) we have, by setting ¢ = b, the explicit formula

.

:..\:’ S o2 N
King = _'Tr_z (m? + k?) (mk = 1,23, . .., independently) (159)
\ N ) ’ B

for th‘e eigenvalues of g fixed-edge square membrane of side length b and
of uniform density oy,  If we write

R: = d’obz)\ (16{])

-
Tt

with R positive, it follows from (159) that the number N 4 {(x) of eigen-
values of the system less than or equal to A is the number of pairs of
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positive integers (m,k) which satisfy the inequality
m?+ k* £ B* (mk #0). (161)

In the language of analytic geometry N, (A) is thus the number of lattice
points® lying within and on the first quadrant of the circle

z? + y* = R (162)

exclusive of points lying on the z and y axes {see Mg, 9-4).
We associate with each lattice
point = = m, y = k& for which (161)
iz satisfied the unit square of which . 2 AN
it is the wpper righi-hand corner. O
With thig, it is clear that ¥ 4(3) is *““*\ N .".;'
the total area of those unit squares <7
which lic completely within the Y
quarter-virele under consideration. \
To obtain an upper bound to the O \ \
difference A; between N (A) and o\l \
(wfi2/4), the guarter-circle area, we . \
note ihat a concenlric circle of o\ \
radius (I — +/2) cxcludes all the [ &7 \ ‘
partial squares whose total area is \g— 7
Ar 1t therefore follows that Apds (& - Z)————
less than the first-quadrant apeaof - " TPrs. 0-4,
the annular ring between t e'\::irbles . o
having the respective radi, R and (R— +/2) (see Fig. 9-4); that is,

Ar = 1rR? — No(\) Q%R — tn(R — V/2)1 ~ ~
,~\':.\" _ = ir V2 (2R - V2 <} +V2xR

Thus we may v:i}te -
\ Na(\) = 1rR? — 3 /2 nb.R,

where {tﬁ 9, + < 1 or, with the aid of (160), we have

Ny = “;"’2)‘ — 84 \X%" (0 < 8 < 1. (163)
T .

In similar fashion we obtain an analogous expression for Nz (M), the
corresponding quantity for the free-edge square membrane of side b and
uniform density oo. The only difference, aceording to (121) of 9-8(c),
between the fixed- and free-edge cases is that we may admit zero values

! A lattice point in the zy plane is apy peint both of whose coordinates are integers—
positive, negative, or zero.
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of mand k. We therefore associate, in Fig. 9-5, each Luttice point which
represents a free-edge eigenvalue with the unit squave of which it is the
lower lefi-hand corner.  With this, 1t is clear that N (A} is the total ares
of those unit squares which lie completely or partially within the first
quadrant of the eircle (162). The difference A: befween Nz () and
(rR%/4) clearly satisfies the relation

Az = Na(N) = 3rR? < 3n(R + +/2)° — izR? B
= Iy -\/‘Z (2K 1 VD < ThR,

fR> 1+ 3+2). Thus we may write A
1 bh2x P ) A
A‘rﬂl(}\) = iﬁRz + @prR = E;*;r;_— + 2,b ‘;_g_['. (0 <2 8 i')‘).‘\(lm)
with the aid of (160). ~\

|

Although 64 and 65 cannot be evaluated in simple foxm &s functions
of N, the reguktan(163) and (164)

Ty | are useful inNIWAE the uncvaluated
~ final termsds, in each case, small
P compa}'c\';l With the Lerm (oo /dx7],
S \\ for sufficiently large . Boih of
b (103} "and (164) are used, in con-
wJuhction with (158) of (b) above,
K N in deriving the asymptotic results
\ \ " below.
- \i . (dy We consider now a mem-
\«' \  brane of uniform density oo and
N tension constant r, for which the
i J\ '3 l domain D may be subdivided,
—t— without gap or overlap, inte 2
ﬁ€§+h) "“‘;1‘*“*{ finite number r of congroent

O squares of side length b. Asso-

fotend]

Fre, 9-5. ) ) -
ciated with this membrane we con-

sidex:\t;}i.é'é.ystems Sa, 85, Sa, S5, G = 1,2, . . . ,r), which correspond £o
the\systems defined in (a) and (b) above:

S4: Entire membrane, boundary edge held fixed
Sz:  Entire membrane, boundary edge free
84,: Membrane of jth square of side length b, boundary edge held
fixed (f = 1,2, . . . ,»)
Sa,: Mf(e;nbr?ne of jth square of side length b, boundary edge free
=12 ...,

The symbols Na(d), Ns(M), N4,(N), N5,(\) have the meanings assigned 0
them in (&) and (b).
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Tor each j. we may apply to the system S, the result {163} of (c)—
namely,

. 528 oo
Vo =228 g \/2"7“ 0 < 8, < 1) (165)

477
To the system Sz, we similarly apply (164), for each j:

oo

b2
LIS M <o <. (166)

47

Na(A) =

Sinee Lhe expressions for both N4 (2) and Nz (n) are independent‘hf
the index §, summation of each over j from j = 1toj = r merely in¥olves
multiplication by ». Thus, with (165) and (166), the relations ¢158) of

(b} above read
b\ Ao | < (a4 \/E ‘
jr‘(TW.;F ﬂAb\/gT < N SN =7 ( LY e (167)
We use the fact that rb? is the total ares, and'the\:réfore
M = ourb? NV
the total mass, of the membrane to cqﬁfz‘iude from (167) that
M P ,
vy - My B ci<a<vd 0w
and 'i“',\
M)\\\ . ?\-_0'_ ’ 5]
Na(d) ='.4—L;;_'+ gprb \/%9 (—1 < 8 < 4/2). (169)

MK

For X large comipared with (S72riblogr /M%) = (8x®r/0eb®) the second
term of each\eni\tIBS) and (169) is negligible compared with the first.
For such laxge A we may therefore write

AN M
e AW —~ ot ———F 170
C NaQ) ~ Na() ~ 7= (170)
or, equivalentiy,
NN M) M 171
lim 42 = lim S5 = w

We let \® represent the kth eigenvalue of the fixed-edge membrane
(S4) and A\ the kth eigenvalue of the free-edge membrane (Ss). It

erseript) is nondegenerate or that in the ascending

1 This means that Ay (cither sup n d
ystem involved Ax denotes the final listing of & given

sequence of the eigenvalues of the 8
degenerate eigenvalue.
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both Al® « M2, and AP < AL we have, by definition of Na(¥) ang
"'VEO\)s

NaO) =k NN -k (172)

Thus the asymptotic results (170) imply
A~ A~ J‘;;k {lavge [, an)
.-flsympﬁoggm{_gy’ that is, the kth eigervaelue of a Jovd=cd o mbrn m:.v.'.\segugf
o the kth eigenvalie of the corresponding free—dy e iocane withdhe com-
mon asymplotic value depending ondy on the total s M ”U\e‘ims:'on cone
stant ©, and the index k. Although this result i pro il Pt only for the
Membrane of uniform density whose shape ix seh 1 had 1t may be sub
divided into a finite number of congruent sijihres '['.LT i extended below
80 as to justify the italicized statoment in its I'ullgﬁ}ﬁ:-r':ulit_\'_l
It is to be pointed out that the final member MNTT5 0= not an iupproyi-
Mation to M* or M” in the sense that (he eppwWor o aosimation can be
made arbitrarily small by taking & sufficionft)¥ Lirge. The made of der-
vation—in particular, the negleet of teM involvine he undetermined
_9; and 67 in (168) and (169), respectivgly” muakes it ol that the reverse
18 in general true. But albhougl}vi:{u" error increases with inereasing
ﬂ_le relative error approaches zeroswil e increasing £ Fhe approximation
gl‘fen by (173) is good only.in the asymptolie sen=c: . the ratio of any
Pair of members of (173) approuches unity as &+~
e may draw two impertant conclusions from fhe results of the pre-
ceding paragraphs. Wirkt, the mudtiplicity of wny g0 A generale) elgen-
value is necessarify\'ﬁ.n‘iie. For it follows from ¢ 165- 1ol 1169) that below
Ay given nu etrthere lie only a finite numbier of eivenvatues. Second,
he etgenvalyesof a given membrane Jorm an infivit aniwnded sequentt.
?ur ?‘bi!i\t&\tn prove these facts depends upon the explivit solubility of
© elgenvalue-eigenfunction problems for the vriform sjuare membranes
of fixed®and free boundary edges, ‘
ﬂnzl}géedazjumpﬁons N O and MM T, upon which (17'2311;
Uperser: e u.nessentml to F-he msEl“S (U730, TN & L -7 Apagps (et
pt), the number & in the fi,
by & + j).

. wl member of 1175 hondd be Tf‘plac,e
by (et Since, accordipg to the preceding P ra i J 1= neccssarlﬂir
“hite, allure to make thig replacement ertor whiE
#bproaches zero ag incroases indefinitely
{e) _T'Ne consider next, a memhy "
omain D may he subdivided
o 7 of congruent 8quares of ,sid

metrs oo falive

- ; i £
ane of Tension constoont «, for w }11(‘.h th
hout g or Gyl tnio o finite num‘I
11 e length b, bt whew density o = olzd!
o end-chapter exercige 20 the genern

oungd, . . reanly iy exteenbed roorhe membrean® e
ary edge is held elastically.
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varies continuously over D. We suppose that the maximum and mini-
mum of o in the jth subdomain Dy are given respectively byt oy, und oy,
so that

Con; L é T, in D_,' (j = 1,2, PRI ,}"). (1?-})

In addition to the (2» + 2) membrane systoms defined at the opening of
() above we consider also the 2r systems

S, Membrane of jth square of side length b, boundary edge held fixed,

¢ replaced by the constant ey (7 = 1,2, . . . .
Sz, Membrane of jth square of side length b, houndary edge iteg)
s replaced by the constant oy, (F = 12, . . . J7h @

N

The symbols N a,(N), Nsy(3) have the same meanings with re,sls{c\c'i: to
Su, and Sz, as Na,(\) and Ns,(\) have with respect to Sa, and 8z, for
each 7. _ o
Tt follows directly from theorem (iil") of 9-11(d) thatN\

N £ Ny and  Na0) 280, (175)

. X 7, \

by virtue of (174). Since Sa, is nssociated wqth,s\ﬁxed-edge gguare mem-
brane of side b and censiani density om,, theresult (165) of {d) above,
with oo replaced by ., may be taken ovgE 10 read

2 5,
E\‘Ti’i(}\) = g’%} — Bdb"xj;;? (0 < By < 1)-

With the first of (175), there’ﬁm’we: we have
)

Do/

b _ eﬂbQ@—fﬁ < Ny 0 <8< (176)
Agr A NN &T
\<&

With similar appligafion of (166) of (d), with oy replaced by ¢ur, We have,

further, \"\ _
AN o BEA NGt 7
711,0°N Aur ) < g, < 1) 177
N W) S S ot \/ 7 0= ) ar

o w ) i . .
Beé&ys}e of (176) and (177) the peneral result (L38) of (b) above implics

AN .
o ) ombt = b NODYNERES
i=1 i=1

A .
é LNB()\) é ﬁ; 2 G’M’-bg 'Jf' Bﬁb \j; z ‘\/G‘_iu',- (0 < 9;,93 < 1) (11’8)
=1

i=1

1 The use of the subscript M to denote maxirum sh
use of the same symbol (but never as subseript) to
membrane,

ould not be confused with the
denote the total mass of the
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From the definition of the double integral we have
Z bt = ff cdrdy — 8 = M — 8, (179)
i=1 D

and

»

Z oub? = !;f odx dy + b,

i<

i

M 4+ 5, (180)

where M is the total membrane mass and &, 8, are positive nuhers
which can be made arbitrarily close to zero by taking b sulliciently, small
(or, since rb* is the membrane area, by taking r sufficiently ];Ll;'géj.\ Fur-
ther, if we denote the maximum of ¢ in.D by oy, we have,

-\
'}

Svims S v s Sva - s
F=1 F=1 i=1 }

With (179), (180}, and (181), the inequalities A%8) imply

h § 3 4
:1;(M—51)—34T0\/%{§NA0\) OO

= Na(\) = ﬁ; (M + &) + 9.33»5&/";:"5 (0 < 84,65 < 1). (182)

Ignoring, temporarily, the q,uaﬁﬁity Ne(A), we infer from (182) that
T\

b o N M
== "Arb\fz—fiéﬁ**m

2O = f—; + B7b :—; (0 < 64,6 < 1). (183)

’t\u
From (183) 't\f:bllbws that
"\

NN M| s Tar
whebe’s is the larger of the positive numbers 81, 8z, both of which, accord-
ing to (179) and (180), can be made arbitrarily small by taking b suf-
ficiently small,

Letting \ increase indefinitely (with & held fixed), we see that the limit
of the lefi~hand member of (184) as A — w0 is less than {3/4r7). Buf,
since this limit is independent of 8, and since & can be made as close to
zero as we please, it follows that the lmit is Zero, or

m Y4 _ M (185)

A oy ‘4\ 1‘;!'“7:.
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From (182) we may also derive the result (185), with N .(X) replaced by
N:(\), in identical fashion.

Thus (185) and the equivalent statement for Np()) bring us to the
result (171) of (d) above. We therefore conciude that all the asymptotic
results enunciated in (d) as springing from {(171) are applicable to the
membrane of nopuniform density which is divisible into a finite number
of congruent squares.

(f) With the aid of theorem (iv') of 9-11{e) we can extend the asymp-
totie results achieved above to the fixed-edge membrane of arbitrary
shape. We let Sa denote the sys- O\
tem associated with a given fixed-
edge membrane whose domain D is
of arbitrary shape. The system Si
is characterized by the domain Du
which is divisible into a finite num-
ber of congruent squares and whose
boundary Cu lies entirely in D, the
same tension constant as for Sa,
and a density function which eoin-
cides with that of S4 over Dy, The
system Su+ is characterized by the T
flomain D which is also divisible Frc. 9.6,
into a finite pumber of congruent
squares and whose boundary € completely encloses D, the same
tension constant as for S ,'\:S.,ff, and a density function which coincides
with that of S, in D antlis‘arbitrary outside D (sce Fig. 9-6). Al three
systems are associatedywith fixed-edge membranes.

If the symbols | 3{@), Nu(r), Nas() have their usual meanings, it fol-
lows from theprexdAiv’) of 9-11(¢) that
| O Nao(h) £ NaO) £ NaolM),
from @15}1 ‘we have, on subtracting (M /4x7) §rom each member,
NAQ\_’ MO M -M _ N _ M

A At Inr ©  x

Ne(y M M'-M
R Ry Fm (186)

d M” is the mass in Do
finite number of congruent

where M’ is the membrane mass in Ds an
Because D, and D ere both divisible into &
squares, it follows from (¢) above that
i !

Ne® M| g

A dxti Ao w

lim

A—oow

N _ M\ = 0.
A dxr
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We therefore conclude from (186) that

NG M|
Jin 1= o=

where AM 33 the larger of the differences |M' — M, [M" — M.

If the boundary € of D is made up of & finite number of smooth ares—
which we assume to be the ease—it 15 always possible to construct
domaing [y and Dy in such fashion that AM s arbitravity small.  Since
the limit on the left is independent of Af, it iz therefore zeve. Thus we
are returned to the result (171) of (4) above, whence 1t Tollows thad the
general asymptotic results expressed in () are applicuble (o {the\fixed-
edge nonuniform membrane of arbitrary shape. The resulifaye like-
wise applicable to the corresponding free-edge membrane, Gt we omit
the proof.

S !

iIA

AM
T (187)

9-13, Approximation of the Membrane Eigenvalqesfxg'

{@) The minimum characterization of the menfbrane cigenvalues pro-
vides us with g direct (Ritz) methoed for app};@i&ﬁating these elgenvalues
in eases where explicit solution cannot beseffected.  We limit consider-
ation here to the membrane whose boandary edge is held fixed, with
extension to other cases left for the gad-chapter exercises.

According to 9-9 the kth eigenvalue »; of a given fixed-edge membrane
problem is the minimum of &%

14 ff (&2 + ¢hdz dy (188)

with respe(,t to thoses s\fﬁuently regular functions ¢ which vanish on C
and satisfy the nor\mah?atlon condition

\'\ ffowbﬁ dr dy = 1 (189)
and the {)‘\ 1] orthogonality relations
\m;j\ ffwm«;b dody =0 (m=12, ... ,%k—1)

) 4
where ¢, is the minimizing function which renders I equal to X W.e
de.nut-fe the system, in the language of 9-10(e), asscciated with this mini-
mization problem by S, with K, the class of functions ¢ cligible for the
first minimization of 7.

For an approximation proeedure we replace S by a system &, which
has in common with it the system-defining characteristics 1, 7, o, p bub
for \x‘hmh the class K' of functions eligible for the first mlmmuatmn is &
certain subelass of K. According to the definition given in 9-10(a) the
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system 8’ 18 therefore narrower than S, If ®(z,y), T2l,y), - .+, BolE,y)
are § conveniently given functions continuously differentiable in D, we
let the class K consist of all functions ¢ which exbibit the form

1,!/ =.C]_®_l Jl_ 62@‘2 + o + qu)s,- (190)

where €1, €z, . + - ; Ce BTE arbitrary constants consistent with the normali-
sation condition (189), with ¢ replaced by ¢.

We denote hy ¥, ¥z, . . « ; ¥, the first s approximate eigenfunctions!
sought and the corvesponding approximate eigenvalues by Ay, Ay, . .
L. In aecordance swith (190) we write &

& N

¢\
Ym = Z ﬂ;m)q{f (m = 1:2: ECI ?8)! \\ (191)

=1 A\

so that the problem of finding each minimizing . is eqliivalént to that

of determining the sct of values ¢, ™, ci”“.‘fg\)r the coeflicients
oL Gy o - G respectively, in (190), for cach m. <&ince the functions ¢

eligible for the kth minimization of T must be Qrth\lé;onal in D to the first
(k — 1) approximate eigenfunctions ¥, t}.’/g,;:§ 7, {p— with respeet i
o(z,y), we have, because of (190) and (19115"

B3

[fottutras= 3 Y eelron St m=1z. k-, (92
)

i=1 j=1

2

where we define AN
<O, = ([ du. (193)
&=

Bubstitution of (LQ{};jifi;to the normalization condition (189) gives, fur-
ther, the condijéim“

N\~ E E cwy = 1. (194)

i=1 ;=1

2 8
N,
NS

. N
Fm{’f}g;'if we define
‘ adb; 0®; | 0% 0% oo o 185
FJ-,; = I{j = T[f (Ex— (}_’B + TJy ay d$ y; ( 90)
fil

substitution of (190) for ¢ in (188) gives
3 ¥
I= 3} Z el (196)
:'——Z i=1
for the quantity whose successive minima we seek.

18ee 7-6(b).
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The problem of determining the minimum of (196) with respect to the
§ quantities e, €5, . . . , ¢; which satisfy the normalization condition
(194) with the (& — 1) subsidiatry conditions (192) is readily seen to be
identical with the corresponding problem worked out in 7-G(c). We may
therefore state directly the following results:

The first s approximate eigenvalues Ay, Ay, . . ., A, of the system 8§
{the precise eigenvalues of the narrower system S’} are given hy the ¢
roots of the equation in A

IE —I'uy + Aenn —Te + Aoz - o =Ty - Aoy, i O
— -T Aoy - -+ =Ta + Ao, A
I =Tz + Aggy 22 + Aoy Aoy =W (197}

e %

! _Psl _i_ Aﬂ'_g-]_ _1132 + A\O’g’_‘ T —l‘sa + .-\Uﬁs“['.' g
The coefficients ¢, ¢, . . | | ¢® which—when & rangedover the values
1, 2, . .., s—supply, through ({191), the corresponding approximate
eigenfunctions vy, Y2, . . . | ¢, are obtained by sdlving the system of s
linear homogeneous equations N

(o — TdeP =0 Wl=12 ... .8
i=1 &N

in conjunction with the normalizgmﬁpﬁ requirement

3 S
m} cgia;c;k,

\{é{igul

0y = i )
for each k. The constants oy; are computed by means of their definition
(193); the T are ¢Oniputed from (195).

From theorquRi)" of 9-11(b) it follows divectly that », < 4, for all k,
since 8’ is bindefinition narrower than S ; that is, the approximation of
each eigenvalde of the original system is an approximalion from above.

(8) Ii-the boundary curve €' of I may be deseribed by the cquation
u(x.(g‘}ﬁ' 0, a simple choice for the functions ® (j =12, ... s intro-
duced”in (a) above is the following:

@) = 4, H, = U, @s = uy, Py = ux:!’ By = wxy, &y = uy2!
and, in general,

¥ =ueryt withj =dp(p + 1) £ (g + 1),
where j = 1,3, ., | &9 =0,1, .., p;

p=L2 . M- -3
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(Thus the choice of s is restricted to values for which (8s 1+ 1) is the
square of an integer.) We employ this choice of the functions ®; to
approximate the three lowest eigenvalues associated with the circular
membrane of uniform density, with s = 3. '

We suppose that the membrane density is the constant ¢o, with the
radius equal to B.  For the function w(z,y) which vanishes on the bound-
ary, we choose

=R — 21+ ¥
With s = 3 we have, according to the preceding paragraph, N\
¢ = R - b % x? +_y2, q>2 = ﬂ?(R '_ Vsz + ?f)a &y = U(R - ‘\/m)'

'\
With the introduetion of polar coordinates (z = r cos 8, y = rsin §) 80

that (193) and (195) become respectively A

A 1
.

B f2r ~
Ty = G5 = Og ﬁ] L q’i@ﬂ" dﬂ N .‘\
and e\

2x
_ &; 0%; 3@; %,
Ty =Ta = f / (6x ax o\ N )rdﬂdr,

we compute directly that L

Ly = wrR2, rzz = Ty = $nrRY,
T =Ty = I'a“s =Ty =T =T =0

g1y = Eﬁ):@,R o3 = o33 = gonoeli®,

[T cr.u o1z = G31 = O3 = iz < 0.

and

““/

With these res\ulﬁs the determinantal equation (197) assumes the par-
ticularly 51mple\£{}rm

&m—Rz 4+ rooRAA) (—imrRY T domacRtA)? = 0,
Whence wa obmm for the first three approximate eigenvalues of the uni-

fon‘&circular membrane
A1=&%! AS'—'A&:;E{
The precise results! are

where jo; = 2.40, j1; = 3.83, to two decimal places.

AL

18ee exercise 13 at the end of this chapéer.
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- Although the foregoing illustration is relatively free from the compu-
tational difficulties one generally encounters, it should supply an adequate
guide to the application of the method to cases which involve greater
complications.
EXERCISES
1. (e} Starting with cquation {7}, and without the aid of Creen’s theorem, derve 8)
by earrying out a suitable integration by parts in cach of the last thres integrand terms,
(b} Generalize the procedure of part {a) to derive the gener] ]','11]er~Lagmnge
equation (10).
2. The equations Q"
z==x"eos @ — y sinQ,
¥ =% sin§ + 5 cos

Il

O )
7\S
define the transformation from a plane cartesian zy coordinate s;y.g;ﬁs’m to a second
cartesian 2y’ system having the same origin, where (s constant s the angle through
which the axes of the former system must be rotated countergldok wise to bring them
into coincidence with the axes of the latter, ’\

(e} Use (22), reduced to two independent variables, Wb f = $u?, to derive the
relation .\\,‘

Wor = Wy 08T G + Wy, gin? Q —'{r’&_..q.,r sin () cos (.

(b} Derive analogous expressions for h, and :w;,,;\:'ith the aid of (22).

(e} Use the results of parts {a) and (b} to sha® that the expression WeeWyy — W,
is unaltered by = rotation of the coordinatenaxis,

() Show that the laplacian 1., + w”,jfj Mnaltered hy a rotation of coordinate axes.

3. Bhow that the selution of the sy¥stem (20} for w,,, w.., 1w, iy abwavs possible o
the jacohian of the t.ranssformatioq isgion vanishing, as required.

4. {2} Given the transformatio;i from cartesian to parnboloilal coardingtes (v, q o

N

T=preodds” ¥ =pgsing,  z = i(pt — g,
show that A

Pyt
Hixr: Show t 13(30) is fulfilled and that b, =4, = Vpt £ ¢ ks = pg. Then
use {407, \"
Dcscr@hc’;}ihe three families of surfaces p = constant, g = constant, ¢ = constant.
(b} Q\wzrf the transformation from plane cartesian to plane elli ptic covrdinates

(pﬂ)"\: v

oy N 14 14 1
Vipeils—_ |2 @ w 1 !
) NPT ¢t [p ap (pwp) g dg (W’q)] Mg

4 Foy o = et — o
e MEEEEED ogigezm,  aw
where ¢ Is a positive congtunt, show that
VR~ o 4gler = ¢ e ——
Thp = X 20 77 ¢F — 4 Vigle 7 9 2 — -
P-4 o (YP(? e hws) + »—q 3 (v/qle* — ghw)

Deseribe t}}e Families of curves P = constant, ¢ = constant, as defined hy (199).
5. By solving the equations of transformation to spherical coordinates

¢ =ramgcos ¢, ¥ =rsin fsin ¢, 2 =rcos#d
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for 7, 8, ¢, show that r represents the distance from (2,9,2) to the origin, & the angle
between the positive 2 axis and the line drawn to (z,5,2) from the origin, ¢ the angle
between the rz plane {posilive ) and the half-plane bounded by the # axis and con-
taining {x,i,2}. Thus deseribe the families of surfaces » = constant, # = constant,
¢ = congtant.

8. (¢) Work out the details of the assertion made in 9-4(r).

i) Prove the assertion made in the final paragraph of 9-5(d).

7. A membrance having all the characteristics of the membrane deseribed in 9-3 is
subjocted, additionally, to a nonconservative transverse force per unit area given by
the expression /' (z,1,8). {That is, an element of area dx dy experiences the externally

applied force Fiz,y,i)dz dy perpendicular to the zy plane.) N\
(@) Use the extended Hamilton’s principle of 6-7 to show that the equation’ of
motion of the memhrane zo influenced is AN
7NN *
2, v
. '5;—;’ = Vw4 Pl ~\ (200)
< 3

(b) Extend the method of 9-7 to show that the solution of”;(ff\ﬁﬁj, with w = 0 on
0, in \V

b »

N
= E . . AP
w J.=1 c?(t)qu(x!y?i:\ W

where )
#¥i¢; + rogy = 0in J.QE”'.. ¢; = 0on €,
and oy

%%{ -+ ?\:I'Ci', ﬁjff -F(xry:t)¢fd$ .
>4 T

{(Each ¢;is normalized in D vi@rr’espect to .}
8. Given the inhomogengg &oundary' condition w = glz,y) on ¢ for the membrane

couation o \os
"N/ I
| g
,\“ I o V2,
7N\

show that we *y write w = u(z,y,t) + o{x,;y) where u =0 and v = glzy) on C,
¥% = 0 and i, = V2 in £). Thus we reduce a membrane problem with an inhomo-
genoeous kw;miﬂary condition to ene having a homogeneous boundary condition, plus a
soluliomnf/the two-dimensional Laplace’s equation with boundary values preseribed.
(Thﬂ\khtéter part of the problem is disenssed in Chap. 12.)

9. Buppose that the temsion constant r, introduced in 9-3{b},
continuonsly differentiable positive funection r = 7{(2,1).

{#) Terive the differential equation of motion {correspo
memhbrane.

() Derive the equation satisfied by ¢ if w =
tion of mation. - .

{£) Prove that the eigenfuneciions of the equation derived. in pa,l't‘ ()] form_ an
orthogonal set in D with respect to the weight funetion « if they are required to satisfy
on € any of the homogenscus boundary conditions discussed 11_1 this chapter—namely,
¢ =10, r(@p/an) 4+ pe = 0, or u mixture.

10. In 9-5(e) it is pointed out that A = 0 is an eigenvalue of the free-

is replaced by the
nding to (49)) for such &

#lzy)g(t) is & solution of this equa-

edge membrane,
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Return to 9-4(a) to show that the time-dependent factor corresponding to the aggoe).
ated eigenfunction (a constant)is ¢ = A + Bi, where 4 and B are arhitrary constants,

11. (@) Derive the result (92} of 9-6(c).

(b) Use the Bchmidt process to show that a set of three linear combinations of
t,z,y which form an orthogonal set with respect to the weight function ¢ = 1 in the
domain 0 Sx 21,0y =<lisoy =1, o=z o=y~ 1

{c} Bhow that the Bchmidt orthogonalization process is in general net unigue in
its determination of the N orthogonal linear combinations.

(d) Provethataset ¢, g2, . . . , ¢y of orthogonal functions is linearly independent,

12. (2) Modify the analysis of §-7 to show that the results achieved :trc.@uaﬁy
valid in the case of the fixed-eclge membrane (1w = 0 on ).

(b) Bhow that in the case of the free-edge membrane the term (A4, + Bty must he
added to the right-hand member of (107) of O-T{a) {see exervise 10 u}go‘véa,\

{¢) Given that w(r,,0} = g(e,y} and d{z,y,0) = kiz,y), show letﬁ‘he coefficients
in {107) have the valucs N

Ap = ff T éng 4T dy, By = ‘—lv_ff atﬁm“k‘&.}‘ dy.
B '\/Rm 5 \J

Give the valies of A, and B, in the case mentioned ,iphmrt .

13. We consider, throughout this exercise, a cir,c{dal' membrane of rudivg B, We
use the polar coordinates (r,8) with origin at tlie'eenter of the cirele, so that r = Ris
the equation of the membrane boundary,

{a) Use (43) of $-2(e) to show that the efnation

Vi g = 0 (201)

is separable (in the sense of 9-8 (q}) if and only if ¢ is independent of 4.
(b) Wo must require that q)m{qs(r,ej be a single-valued function of position in D,
so that a(rd + 2m) = #{r, )¢ \Bhow that, if s = a(r}, equation (201) has sclutions of

the form H,(r) sin 26 and Hkr) cos nf, wheren =0, 1,2, , . .,
() If ¢ = &4, a constany, show that

PN\ alr} = Jor g
'S M
where J,.(z) '\thc nth-order Besse! funetion of the first kind, provided we impose the
condition thut ¢ be finjte everywhere in D. Hint: Compare the r-dependent differen-
tial equqtib’n with (41) of 8-3{¢).
@ IEwe impose the boundary conditicn ¢ = 0 forr = R, show that the eigenvalues
ard\given by the scheme

Mup = R, n=012 .., k= 1,23, . ., independently),

where ju; is the kth positive zero of Ju{z). Thus show that the two (unnormal-
ized) eigenfunctions which correspond to the eigenvalue hn (n = 1,2,3, . . .} are
Julrin/R) cos n# and Jalrjne/R) sin n6. How many eigenfunctions are associated
with each of the sigenvalues Aox?

(¢} Bhow that the eigenfunctions associated with A vanish on the cireles whose
radii are given by (fui/ju)R, for i — L2 ...,k ~1 (These arc the so-called
nodnl cireles,)
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(f) Show that the vibration frequency associated with the eigenvalue \u is (1/2x)
v :r/u‘u (j»k;"fR)-
14. Use the orthonormality of the eigenfunctions to derive the expression for ¢nm
given in (94} of 9-6(d).
15. Show that (& — 1) linear homogeneous equations among the quantities e, ¢,
. , c—subject fo the condition

N\
—always possess at least one solution. Hine: Consider the system of k linesr Remo-
geneous equations consisling of the original (& ~ 1) equations and any onQ:di these
repeated once.  Evaluate the determinant of this system (see 2-8(b)). ¢\

16. List the physical conscquences of theorems (i), (ii}, (iii) of Q-IIQW.}[;G}I. arc direct
generalizations of the physical consequences drawn in the text from&hdprems (i), (i),
(iii} of 9-10. O

17. Prove the following extension of theorem (ii} of 9—11((1)”.;\

1f the maximum of o4 is less than the minimum of o In DyBhen A0 > A®. Hisr:
First show, from the differential equation, that the k’thxeigeﬁvalue of a constant— sys-
tem iz inverscly proportional to e \ &

18. Tt is required to extremize the integral \®

r = [[ oo dy
with respect to functions which are eeltimuous, with their first derivatives, in D—
except for a finite number of smooifivgres which subdivide D, without gap or overlap, -
into a finite number of subdomalng® across these arcs, the eligible functions ¢ may
exhibit finite discontinuitics, {het the subdomains be denoted by Dy, Do, . . ., b.
and the respective boundagies\by Cy, Co, . . -, C..

{z} Show that the “eqipPocess” of 9-5(h)—with the time integral suppressed, and
with extension to take arc of the allowable discontinuities—leads to the result

¥ .j\"
5 -8l +2 (@D s fo[EE-E 8] -0
=1 Dl

3y
v Ap}:ﬂ} Green’s theorem (22) of 2-13 to each subdomain D; separately. N
(8" 8Pev that the permissibility of discontinuitics across gach (; of the cligible
funetiefis ¢ allows us to choose » arbitrarily in the line integral along each C:.  Hence,
conclude that

of dy _ id__x =0 on C; {i=12 ...,

do-ds Iy ds

¢ of D is 2 point of at least one of the Cy; thus we

have the result that the boundary condition satisficd by the extremizing ¢ is the same

at cach subdivision boundary as it is at the exterior boundary of the wl_wle do'm:um
(¢} Generalize the final result of part (b} to include cases in which ¢ is required to

satisfy normalization and orthogonality conditions in D. Establish the assertion

made in 9-12(h) that any eigenfunction ¢ of Sp—which satisfies (8¢ /on) = 0 on

C—must satisfy the same relation on each of Ch, (/A

But every point of the boundary
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19, In: 9-12(c) show that (#5 + 3 4/2 64) < (2/x), and therefore that 8z < (2/x),
84 < (2 4/3/r), Hiwg: First show that ¥5,(\) £ Na(\) + 2R — 1).

20. We consider three membranc systems 8, §’, 8 which involve the same physical
ynemhbrane; hut § involves the boundary edge fixed, § the boundary cdge held
elastically, and 8§ the boundary edge free.

(@) If X A, I\; represent the kth clgenvalues of the respeetive systems, prove that
NS M S A

() Use the result of part (a) to extend the asymptotic results of 1-12 to the case of
the membrane with bonndary held clastioally.

21, (a) Use the orthogonality property to prove that a given membrane Syst-_e]Q can
posgess at most one eigenfunetion which does rot vanish in the interior of I

() If a memhrane cigenfunction changes sign anywhere in £, continufy, requires
that it must do so either across an arc which has its end peints on thv\h\dundary or
across some closed curve in D, A curve across which an cigenfunchiow' changes sign
is called & nodal line. &

fe} Prove that the eigenfunciion associated with the lowest/gigenvalue of a fixed-
edge membrane system § ean have no nodal lines in the ingerlar of £,

Proor: Assume the contrary: Suppese that the nodahhge’ divides f* into two or
more subdomaing in each of which the ecigenfunction palia% one sign, wilh o reversal
of sign between adjacent subdomains; let D* he one afﬁhése stibdomains.  Show thal
the Tunction ¢* defincd as equal to &, in D% jsgndeigenfunction of the system 5%
associated with D* (boundary edge fixed, same{e)¥ as for S} which corresponds with
the lowesl (see (iv} of 9-11{«)) cigenvalie Ay ofSY¥, equal to the lowest igenvalue of S
T.et D' be any subdomain of I such that D{eantains D* as a subdomain,  Prove, with
the aid of theorem {iv) of 9-11{e), tha’t'.thé'lowest cigenvalue of the system 87 associ-
ated with I (boundary edge fixed, samig s,  as for 8) is also Ai; let ¢ be the correspond-
ing eigenfunciion. Bhow that thefunection whieh is equal to ¢ in I and is tdenticaliy
zero outside I is an cigeni'unc{«ibn of § associated with the lowest cigenvalue Ao

Construct a sequence D Z;~ . . ., I, of subdomains of the type £, where D;‘—l
15 a subdomain of D:,- {4 :——-}}3, ... ,m — 1} Thus show that it is possible to eon-
struct m Lnearly independent eigenfunctions ¢V, ¢i®, . , ., gplei—with ¢t idenli-
cally zero outside D;«%of the system S which all correspond to the single cigenvalue du.
Since m can be ehdsen arbitrarily, this result eontradicts the conclusion of 9-12{d)
that the muﬁ;jigity of any given eigenvalue is necessarily finite.

(i) Showsthat the lowest eigenvalue of a fixed-edge membrane is nondegenerate.

3] Ilh\é;jfrate parts {£) and (d) by means of the rectangular and eircutar fixed-edge
membranes of uniform density.

£2\a) Retarn to Chap, 8 and derive, in the manner of 9-11, a maximum-rinimurm
chaggeterization of the Sturm-Licuville cigenvalues.

fby On the basis of part (1) prove that an increase of the function r = {x) cannct
decrease the nth Sturm-Liouville eigenvalue X,; that an incrcase of o = o{) cannot
ITCTEASS Ay

(¢} Prove the result unalogous to (158 of 8-12(b} for the Sturm-Lionville eigen-
values, where the inferval ©; £ » £ x» is subdivided into r sections in the fized- and
free-end-point cases,

{#) On the basis of parts (&) and {¢) derive the asymptotic formula

#ir?

A S
za 2
(j:] Vofr a’.x)
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in the ease p = 0. Hrvr: Use the fact that . = [ni%%/folz. — )% if & and r are
both constant, and compare 9-12{e}—with the use of the quantitics {r/m)m; and
{r/rhar, In place of (o, /) and (oar,/7), respectively; part (b} above is requi'red.’

23, Apply the final remark of 9-13(a) to the appreximation of the vibrating-string
eigenvalues developed in 7-6(c). Hixt: Use exercise 22(a) above.
" 24, What change in the procedure of 9-13(e) is required if it is to be applicable to
the free-edge memhbrane? ]

26. Fxtend the work of the foregoing chapicr to the three-dimensional analogue of
the vihrating membeane; that is, consider the case in which

il”=£,ff[mi:2fixd-ydz, V==}rff/(w§—[—w§+w§)dxdydz, "\
¥4 S N
¢\
where 1" and V are respectively the kinetie and potential energies of the giwtn gfatem
which eccupies the regton £ of three-dimensionsa] space. Here ¢ = o, %} may be
interpreted initially as mass per unit volume, « ag sn clastic constant; #Amay be con-
sidered to mcasure some sort of displacement from equilibriurm, Z’Wc congider two
cagses: w = 0 on the boundary B of £, and w completely unspecihed on B,
Work out the details of the following cutline of procedurb\¥
(@) Use Hamilton's principle to derive the differential {qqat.iou
$

2 ‘.' W
T = o 22, N \ ' (202)

where V2w is here the three-dimensional Iapla¢i*;i.n. Show that the eigenfunctions of
the problem satisfy N

Wi + A= 0 in R
with either ¢ = 0 on B or (3¢/dn) 4'9 on B.

(b} Assuming the validity of{#mdexpansion theorem analogous fo that given in
9-9(d), prove & minimum, tll&{\a”maximum-minjmum, characterization of the eigen-
values of the system. \ )

{¢) If /o) = ¢, a condtant, solve the eigenvalue-eigenfunction problem .for the
eube of side length b inthe case ¢ = O on B. Show that the eigenvalues are given by

4 & 22 i R
\3;},- =Sh R ) ki =128 ).

Show thatfoF the case (dg/an) = 0 on B (the free-boundary case) the eigenvalues
are EiW{i }\33( the same formuls, except that m, &, j may cach take on the value zero
{ef. D81b,c)). ]

(d) Let N4, (A} be the number of eigenvalues less than or equal fo A In the fixed-
boundary ease in part {¢} and let Np,{3) be the corresponding qt}antity for the cube
with boundary free. 1In the manner of 9-12(¢) derive the expressions

: A2
Na(h) = 6—%?\" - % ’\/§ 0;_{;0-,; 0 < g4 < 1),
EN
Na(y) = ﬁj—;a N 4 365 :\Ti (0 < 8s <1).

(¢} Use these last results, together with the maximum-minitaum principle of part (&)
ahove, to derive the asymptotic formula (for the fixed-houndary case)
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for the pumber of eigenvalues less than or equal to A, where W is the volume of the
region R; it is required that the eigenfunctions vanish on the boundary Bof B. (The
proof requires merely a repetition of the steps carried out in the two-dimensiona)
investigation of 0-12, All the intermediate results which are required can be derived
from the maximum-minimum prineiple for the eigenvalues in the three-dimensional
problem.}

(f) Cavity (black-bady) radiation. Show, as an adjunct Lo part {b) above, that wis
capable of varying periodically in time with frequency » = (1/2x)+/x, if A i3 an
eigenvalue of the problem ; such values of » are termed “natursl vibration frequencids,”
48 in the case of the membrane. Thus show that if n{¥) is the number of nitural
frequencies less than or equal to », we have, in the fixed-boundary ease, ¢ \~>

; A
o, ~\ (203)

<

n(v) ~

where W is again the volume of EB. ‘¢

This last resulf is of tremendous importance in the theory of’alermal radliation in a,
cavity—so-called black-body radiation. In the thcory of\this radiation, which is
deseribed by the differential equation (202) of part {(a}, {\b(ﬁf{!, it is required to deter-
mine the asymptotie distribution of radiation freqiemeies. In physics texts the
derivation is usnally earried gut for the cubical regiep and is followed by a statement
of its provable validity-—with b* replaced by the kolume W-—for volumes of arhitrary
shape. The proof is embodied in this exercigesy ‘(For application to cavity radiation
the right-hand member of (203) must be multiplied by the factor 2 heeause of the
two possible polarization directions which are associated with each electromagnetic
vibration. Here ¢ is the velocity of light.)

The result (208) is also applied tQ‘the theory of vibrations of & crystalline solid.

7%



CHAPTER 10
THEORY OF ELASTICITY

In the ensuing chapter we consider some phases of the mathematical
theory of elasticity in its relationship to the caleulus of variations. The
first part of the chapter is devoted mainly to deriving the basic equations
of elasticity theory as direct consequences of the extended Hamilion's
principle (6-7). The latter portions focus attention on the pr.Q'b‘le}ns of
the vibrating rod and the vibrating plate. « M

While this chapter should be of importance mainly to thgsgyindividuals
who possess some background in the theory of el:—a@{i&ity, its subject:
matter is meant to be sufficiently self-contained te be of interest to
persons not specifically studied in the field but who have mastered the
content of the preceding chapters of this bo&kf‘\ The introductory dis-
cussion of the basic notions involved is necegsarily held to minimal com-
pactness, however. O

Throughout we limit consider&tion;ﬁd"the usual linear theory—i.e., to
the study of deformations so small hat the generally useful Hooke's law
(10-1(d)) is applicable. )

2

10-1. Stress and Strain ¢\

{z) W consider a defbr\n{able solid body under the influence of two
sets of force distribufion: (i) so-called body forces, which in general aet
through the entire; extént R of the body—whereby the force exerted upon
any volume elerient in the neighborhood of 2 given point is proportional
to the volurde'e the element; and (ii) so-called surface forces, which act
only at tha%sundary surface B of the body—whereby the foree exerted

upon apy-element of surface area in the neighborhood of a given surface

oy

poixﬁm ‘Proportional to the area of the element. _
Th& three cartesian {(x,s,%s) components of the body-force density are

denoted by F,, F,, Fs, respectively, 80 that the total body force acting
upon the given solid in the z; direction is accordingly -

fl Frdz desdzs (k= 1,2,3),

where the integration is carried out over the entire region k& occupied by

the body. Tn general Fi, Fs, Fs are functions of position in K.
199
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The three cartesisn components of the surface-force density are respec-
tively denoted by 7'y, T, T4, so that the total z; component of the sur-
face foree acting upon the given solid is

! TvdS (b =123),

where the integration is carried out over the entire boundary surface B
of the body. In general T:, T, T are functions of position on B,

The most usual example of a body-force distribution is the influence of
a gravitational field. Surface forces are in operation whenever a hody is
subject to contact with external agencies at its surface. .

(b) As. the result of the application of body and surface fordes to a

deformable solid body thore oceur, in general-—in addition, to.the acceler-
ations considered in the study of rigid mechanics—displaeements of the
particles of the body relative to one another; .., a :gt-éte of slrain exists
within the body. If the body is elastic, the imposition of a state of strain
calls into operation forces which behave in such\fdshion as to resist the
deformation and so tend to restore the body, {ohts unstrained state—z.e.,
to the state which would obtain in the absence of all body and surface
forces.
The elastic forces which tend to oppdse deformation are described in
terms of a system of stresses deﬁne(:iih the following way: At any given
point of the body we draw an afbitrary plane element of arca normal to
a direction denoted by #»; e consider the elastic foree per unit area
exerted across the elemegt‘by the material on the positive (with respeet
to the n direction arbitearily chosen) side of the element upon the mate-
rial on the opposite gide. The three cartesian components of this force
per unit area—the so-called stress vector—are denoted respectively by
Ta1y Tazy Tas. pbw’general the values of these components depend upon
the oﬁentﬁg‘n‘ of the clement of area as well as the point of the body
under couSideration. In particular, if we choose the n direction to eoin-
cide with the cartesian z; direction (& = 1,2,3), the components of the
sioreqs}ect-or are denoted by

Tty The, Tia (B = 1,2,3). L1

The nine quantities appearing in (1) are called the elements of the
stress tensor evaluated at the point under consideration. They are
assumed to be continuous, single-valued, eontinuously twice-differenti-
able functions of position within and on the boundary surface of the body.
From the definition of the stress tensor it is clear that the ““diagonal”
elements T, T, T3y represent pure tensions or pressures normal t0
plane elemonts parallel to the cartesian coordinate plancs- tensions if
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positive, pressures if negative. An “off-diagonal” element’ T%; (j = k)
represents a. shearing stress in the’ ; direction and acting across a planc
glement: normal to the 2 direction.

Elementary considerations' lead to the symmetry of the stress tensor—

namely,
T, = Tha (k.4 = 1,2,3 independently),
so that only six of the nine elements T are independent. Further,? the

stress veclor across any elementary plane area of arbitrary normal diree-
tion n is related Lo Lhe stress tensor at the point under consideration by

the set of three equations A
ne

T = T cos (n,1) -+ Ty cos (n,2) + Ty cos (0,3) (k = ,1,2}6), (2)

where cos {n,7) is the cosine of the angle betwechn the x; dlre(,twn and the

positive direction of the normal n. "‘.\

(¢) In the analysis of strain in a given solid body JWé fix our attention
upon a single point of R, whose cartesian coordy@tc& in the unstrained
gtute ave 1, xe, 23, and the close neighborhood.cff\ﬁhis point. We suppose
that in the strained state the cartesian coordinates of the same point have
become {x; + 1), (s + ), (x5 + us), With’r Wi = Hp(2y,e,7s). Wecon-
sider alzo a close neighboring point whose coordinates before strain are
2, 7y o and w hm;e coordinates umder strain are (] + u)), (xy + uy),
(35 + wh), with ) = uk(xl,xz,x&} “"Thus the components of relative dis-
placement of the two pomts m, passing from the unstrained to the strained
state are \\

N\

u’k - U 3 ﬁkImZ;x;;x;) - uk‘(xl;xij?s) (k = 1;2!3)
A\

The definition of *Sclose neighborhood” is such that the partial deriva-
tives (0us/dxdyvetc., which appear in the analysis following may be con-
bidered as eonstant over the neighborhood and that only terms lincar in
(), — Ligh \need be kept in the expressions giving the relative displace-
ment§ (al — u).

We develop the displacements u; = wu(2),25,75) as Taylor series® with
neglect of quadratic and higher terms:

! Bee Bokolaikoff, pp. 41-43.

* Bokolnikoft, p.39. An mdepenclent proof is ca]led for in axerclse 5 at the end of
this chapter.

“1In gencral-uy = u;(xl,mz,:vg,i) where ¢t is the fime variahle. SlIlb() the analysm
lmmedlately following applies to a single inatant of tizme, we ignore tho fact that.
cach w; may vary with time,

* Bec 2-10. :
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du du ;
uj, =m+§i%(—’ﬁi—$1) +-§£($’z"$z) +‘“3;:($a ~— Z3)

(b =123), (@)

since w(x1,%2,%3) = 4, by definition. A useful rearrangement of the
resutd (3) 1s

El , 1fa du p
u;—ukzé(a%wf'l‘é:—;)(h—xl)ﬁ‘g(ﬂ“F 2)(%“32)

6-'1:‘[ axg a—x_}c
s | dus\ , 1fduw  du) o, LN
+5(22+ ) @ = = ‘*‘2(ax1 az,) )
KON
1fowe  duay Lfow _ dugy , L
#5(G ~ ) ot = o +3 (e - 5 = o @
for k = 1,2, 3. With the definitions N :\ :
”‘\
ey = L0 0 B — 1,230
G = er = (axj + 6.1:*) (5,h = 1,2\{3, Independently)  (5)
and x\x

Z1(ou _du Y WS ¥ (P TR
DT 2\am Tams) 2T 2\as, L0n) T 2\er  m
the three equations (4) for the co'rigipf)nent.s of relative displacement may
be rewritten -
W~ = enlr) — xl)ﬁi-.\ié}s 2y — 22) + ens(zh — )

- wa(i?; - .'152) + wz(i'ﬂ; - 33),
7 g
My — U2 = ey (a; —..?;1)~+ e22(zy — Za) + ess(Ty — 3)

™ X + wa(ﬂ?; - ml) - w;(a:'; - xs), (7)
1;; - Uy = 631(3«{{\"“ x]_) + 332(:5; - xﬂ) + 633(1:; - xa)
\:\’ — wafxy — z1) + w12y — ).

The g\ié.';rh;ities defined by (5) and (6) are assumed so small compared
with #nity that squares and products—for example, w], e, etc.—may
béneglected in the linear theory to which we restrict our attention.

It is easily demonstrated? by means of the equations (7} that the change
which the distance between two reighboring points (2y,s,;5) and
(#1,%,25) undergoes as the result of strain is independent. of the quantities
@1, @2, w3, but depends only on the quantities es——provided we ignore
squares and products of these quantities, as stipulated in the preceding
paragraph. For this reason we should expect elastic forces—i 6., stresses
—-to develop only as a result of those relative displacements embodied in

! Bee excreise 1 nt end of chapter.
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the terms of (7) which involve the quantities e;. The quantities e,
defined by {(3), are called the elements of the sirasn fensor evaluated st
(#1,%2,%3)- According to (5) the strain tensor is symmetrie—that is,
ex = e~—s0 that in general only six of its nine elements are independent.
These elements e are assumed to be twice continuously differentiable
functions of position in K and on B,

(@) The main body of the mathematica} theory of elasticity rests upon
the assumption of a linear homogeneous relation hetween the elements of
the stress tensor on the one hand and the elements of the strain tensQr
on the other. This type of relationship, known as Hooke’s law, is gener-
ally applicable, provided the strain elements involved lie below ertain
values charaecteristic of the material upnder consideration. /The “most
general form of Hooke's law is embodied in the six (sincg,eﬂ;'—: ey and

Ta = Th) equations o\
\.

" : : , AN
T = Clfer; + Clbes + Chiess + Clhers + Cilens R 000
G,k = 1,2,{, dndependently), (8)

9. N

where the quantities C¥ are elastic constar}t,r&if the material to which
the law is applied. Y

If we limit our study to bodies which-are elastically isotropic—i.e.,
whose elastic propertics at any given peint are independent of direction—
the number of independent elasticiconstants is reduced from 36 to 2, and
the Hooke’s law equations (8)“1’6‘8.3

O\ ;
T_—;k = AB,-;.-(en -+ a2 + €3 )‘\'}1.23\6’;:;: (.?:'rc = 1:213: lndependentIY)r {9)

where A and B are experimentally determined positive elastic constants
of the material, assufifed homogeneous as well as isotropic. (As in earlier
chapters, & is tfl\:e» Kronecker defta—zero for 7 5 k, unity for j = k.)
In the followifiz “Sections of this chapter, wherever a relation between
stress and stfain is required, we assume the validity of (9)—Hooke's law
for a hombgeneous isotropic elastic solid.
Sokqné the six equations (9) for the strain elements, we obtain
) :

Ty + T, e = = Ty G5k #4), (10)

1
&rp = 7 [Thr — B

where the quantities

B(34 + 2B) I 11
E=—Fxp ' 7THAFDH an

. . . »
are elastic constants known respectively as Young's modulus and Poisson’s

ratio. The physical significance of E and « may be ascertained by sup-
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posing a long rod to be under tension in the x, direction, the line of its
axis; only, so that Tay = Tys = 0. Trom (10), with & = 1, we obtain
en = (79:/E), so that E iy the stress per unit strain, both parallel to g
given direction in the situation deseribed. With & = 2, then k = 3, ip
(10} we obtain eg = és3 = —{¢/E)T; that is, the strain of contraction
in any direction transverse to the lone direction of tensile slress is o times
the strain of extension in the direction of the stress.

Since A and B are positive, it follows from the sccond of (1) that
0 < ¢ < 3§ for all substances. '

(¢) It follows from the definition (5) of the strain-tensor elements e;
that these quantities eannot be completely arbitrary as funcliopsof posi-
tion within a body if they are to be continuously twice ditfieitiable as
required—i.e., if the components w1, %s, 13 are t0 be contimyously three-
times differentiable. Because the order of mixed pargial difforentiation

is immaterial, i follows! from (5) that o
62€;¢;¢ _ a 38{,‘ ae,-k ae;n- N . X .
o 5‘.’6‘; = 6—.’3;:( a—x—; ‘é":a + ‘EE: ';‘“\\Qz = 1 E ‘E) (12)
and :\
3ein 2., 52280
R T ) (13)

8x; dx,  dxp gt

The sets of equations (12) and (,1'3)’ are known as “equations of compati-
bility.” It may be shown? thag they are sufficient, as well as necessary,
conditions for the exist-en'qebf funetions 14, us, % suitable fov deseribing
the displacements of the\‘pi)'ints of an elastic solid in a state of strain.

10-2. General Eq@ations of Motion and Equilibrium

{a) In order.?si'zin‘ive at the equations of motion-—and of equilibrium
as a speciahgase—of an elastic solid, we make use of the extended Hamil-
ton’s pringiple enunciated in 6-7, Playing the role of the generalized-
force‘cgfn‘i'ponents are the body- and surface-foree distributions, defined
in "iQ}'-l {a), which act upon the solid as influences of external agencies.
The generalized coordinates are the components of displacement i, s, #s.
We proceed to obtain expressions for the elastic potential and kinetic
energies of a solid in a given state of deformation.

As stated in 10-1(c), only terms involving the elements of strain e in
the expressions (7} for the relative displacement of two close neighboring
points of the body give rise to stressesin the body. For this reason any
function representing the potential energy of deformation must depend

! Bee exercise 3 at end of chapter.
? Bokolnikoff, pp. 24~28,
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only-on the elements ej of the strain tensor. In eonsidering the existence
of such a funclion one must take into account the fact that the deforma-
tion of an elastic solid is accompanied by the development of heat energy
within the solid. There are, however, two limiting cases in which this
fact presents no difficulty and in which- the existence of the strain poten-
tial-energy Tunction may be established: (i) a state of vibration so rapid
that the Lime of a single eycle is too small for heat to fiow out of the body
(adiabatic) and (i) a deformation which occurs so slowly that the tem-
perature of the body remains uniform and equal to the temperature of
the surroundings (isothermal). The achievement of any cquilibrivm
state, for example, falls within the latter category. We assume(in ‘all
that follows that cither of the two situations obtains, so thap“we ay
define the strain potential energy per unit volume? N

L 3

W = W(611,822,633,612,323,631,621,932,813):“'\§' (14)

(A speeific form for the function W is derived in 103 (3;;) below.) Thus
the total potential energy of deformation is givefihnby
{v

v = [[f W dz @xéjd;;::st
R .~.’:’“

If p is the density {mass per gni:ﬁ :{folume) of the body, the kinetic
energy of a volume element deydzs dos is 3p(ed + 0l -+ ubdas dus das, so
that the total elastic kinetiei:el\ergy of the sol_id is given by

O,
& > %_Lff ”k; i doy das s

Since the coniptments of the body- and surface-force distributions are
assumed to depend only upon the variables @1, @3, 25 £ and not upon the
displaccments u1, us, us, we may employ the form (60} of 6-7 for the
inte I"thl\t(\] be extremized according to the extended Hamilton's principle.

3 - -3

the sum Y Gagsin
' k=1
the volume and surface

Since we deal with a continuous distribution of mass,

(60) of 6-7 must be replaced by the sum of

integrals 3
3
gf ,Z’l Frug dy das dg + g kz_] Tz dS.

! Although e = 13, €2 = éga, ¢1s = ea, inclusion of the final trio of arguments of

the function W iz useful below.
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" Thus the integral which is extremized, according to the extended
Hamilton’s principle, by the functions #i, 44, uas describing the actual
motion of an elastic solid body is

= Lﬁs {fj!f [%p 21 w— W+ 21 Fku;c] dx1 dx, dixs

+ ff Z Tius dS}dt. (15)

bl

The extremization is carried out, according to 6-7, with respect to\suf-
ficiently regular functions us, us, 4s which describe the actual elabtic con-
figurations at ¢ = {y and £ = {;. Moreover, there may be portions B of
the boundary surface B at which the ellg1b1e functions u1, s, Uy MAY be
required to possess prescribed values. TFor an elasticity prablcm 18 gener-
ally posed as a boundary-value problem whereinsats each point of the
boundary surface either the three components ¢fhe surface-foree dis-
tribution or the three components of the dxsﬁ}a‘cement are piven. At
those portions B” of B at which the compon‘ents of the surface-foree dis-
tribution are given, no restriction is made upon the surface values of the
functions eligible for the extremizationdin fact, one result of the extremi-
zgtion process is the derivation of boundary cond1t10ns which must be
satisfied on B”. :

(6) To effect the extremlzatmn of {(15) we replace each u; in the
integrand of I by the oneSparameter family of comparison functions
Ur=w+ep (k=128"and so form the integral I(e). IHere the
e = k{1, %5, Ta,8) ATEN assumed to be the actual extremizing functions,
while the ny = n(airy,25,f) are arbitrary to within continuous differenti-
ability and resttictions based on the following considerations: Since,
according tosthe requirements of the extended Hamilton’s principle, w,
s, g are prescribed at ¢ = 4 and ¢ = f;, we must require 9y = 32 = 73 = 0
“abt = fpand ¢ = £, Moreover, the three g, must vanish over those por-
tions B/ of the boundary surface B upon which the displacement com-
ponghts are prescribed. (The values of the 7 may be chosen arbitrarly
over those portions B” of B at which the components of the surface-force
distribution are prescribed.)

Further, we introduce the notation

1{aU, | UN  1{0w . ou 1{8 )
E,. =21 275 k e} ﬂk iy,
*T3 (3—"3;' + 3%) (6.?:, T 9z Teg 2 \ 8z; + ALy

by the definition of U, U,, U; above. We therefore have the result

?_%ﬁ‘_.l One , I 16
2=y i) s
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Thus when we replace (w1,us,u5) by (Us,Us,Us) in the function W of (14)
—i.e., when we replace each ¢ by the correspending E;—we obiain

anx W By | on aw am
E E 8E (ax, 8y, ErN (17)

F=1k=1

sincet K = E.
The integral I(e), formed as described ahove, is clearly an extremum
when ¢ = 0, so that we have

ey
D) = 0. A\ (18)
With the definitions

3 4
1 w7
=50 2 W+ 2 Fitn, g = E e, (19)
o
infroduced for the sake of brevity, we proaeéd to form the derivative
I'(¢), then set ¢ = 0 (which means: replace® 4 by e, Ea by e;). - Sinee
(aUi/0¢) = m and (3U:/9¢) = #, we hake, with the aid of (17),

R
ay

N N 3
I W @
CRURT/DIEISE SEp S e

‘

& ﬂ E—_m as{a=0, 0

A%/

because of (18). AN
Integrating by parts with respect to ¢, we obtain, since each n: = 0 at
= fl and f, g\ﬂw

[f,[f‘ﬂ' N iy dg dg dt = f[ff’”’az( )dxldxzdxgdt (21)

According to Green’s theorem (20) of 2-14(b) we have, further,

3
aW a
B ff[ 2 63,;; am dz: dzs dzs = ff_/ ki E 333; (aﬁk) s diy s
A
f[ e 2 =~ €08 (n,HdS, (22)

f Bee excreise 4 at end of chapter.
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where cos (n,]) is the cosine of the angle between the z; direction and the
outward normal to B, as a function of position on B,
With the results (21) and {22) equation (20} becomes

ki 3
& ’ af afof a faw e
flfﬂ 2”[?“&@)*2?(6—)]“@
I k=1

=1

3 . 3
g7 an- . _
-+ /f 2 Tk [a—w‘ Z e cos {(n,7) ’ dh} dt\- 0,
B E=1 ey

where the surface integral over B is replaced by the corresp@r\ld}ng inte-
gral over B"”, because n1 = n; = 53 = 0 on B’, the 1;0,313‘31'11(1(31‘ of B,
Since the 5. are arbitrary in R and on B, it follows{{rom an obvious
generalization of the basic lemma of 3-1(¢) that! R4

3 \
o _(d 9 (aWN _ o o
YT (a»a,c) T z oz, (aeﬂ,) =0 ”,\43‘}\13 (k=123 (23)

j=1 N\
and N
2 N »,”“
% - oW 1 ._"}' ) r _ .
B E G 00 (WALSND on BT (b =123). (29

i=1

Since {; and ¢, are arbitra{w: these results hold for all £ With the defi-

Y

nitions (19) of f and g,\gﬁll‘étions (23) and (24) read respectively

V8 (oW i .
Bt 0 o («3_3,7;,) =oly,  mB (k=123 (25)
:~'\l.f=1
and 3
'"\”\' T = E g_l_i €os (n,j) on BY Gk = 1:2}3)' (26)
¢l

vV ic1
With the aid of the boundary condition we show in () below that
W

ae,-k

= T; (7,k = 1,2,3, independently), 27
the. jf’f’ element of the stross tensor defined in 10-1(6) above. With the
validity of (27) therefore assumed at this point the equations of clastic

1Tl:ze argurfleut is essentially an oxtension of that which follows dircetly after
equation {(54) in 3-8(g) or that which follows equation (72) in 9-5(h).
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motion (25) read

ale 0T | 07w 0%,
Fx;# e +6—1‘2 + 875 _ﬁﬁ‘z?

nk  (k=123), (28

while the boundary conditions (26} become
Ty = T cos m)) 4 Ty cos (0,2) + T cos {n,3) on BY (29)

for (k = 1,2,3).  On the remainder B’ of B it is assumed that U1, Us,
are prescribed. Tt may happen that B’ (or B’} coincides with B: thaty is,
1, Uy s May be prescribed everywhere (or nowhere) on B, in \W‘hlch
event (29) holds nowhere (or everywhere) on B. N\

{¢) The equations of equilibrium, of which we make some. use n sue-
ceeding sections, may be derived from the equations of motlon (28) by
setting the ueceleration components (9%u:/82) equal ta z&m‘fork =123

af 1k aT?k aTJk

Fr + v + 37, + ire 0 m R.. \JE = 1,2.3), (30}

&

The boundary conditions (29}, in con;uncmon Jwith the discussion which
follows (29], remain valid for the (,quxhbrlum case.

The solution of the equilibrium equatlczns (307 subject to given bound-
ary conditiuns is uniquely determmed. provided the equations of com-
patibility (12} and (13) of 10- I(e)are also satisficd by the e related to
the 7'y through the Hooke’s lagh felations (10) of 10-1(d),

In the work of the pregenk Cchupter no use is made of the equations of
motion (28) as they stan}k we employ, instead, a special method for
handling the dynamicalproblems (vibrating rod, vibrating plate) which
come under our cohgideration. In both cases the special method is
developed with tﬁb ‘ald of results obtained in the study of problems
described by tl@ equatmnb of cquilibrium (30}, TFuller discussion of the
method, in 1ts§en(,ra1 aspects, 1s found in 10-3(a) below.

(d) To, c{erlve the relation (27) of (b} above we consider the arbifrary
elastig '”s’@hd R* whose boundary surface B* is everywhere interior to the
boundiyy B of a given solid R, of which R* is clearly an interior portion.
Since R* is complotely surr(mnded by, and is everywhere contiguous
with, portions of R, we cannot prescribe the displacement components
on B*; instead, it follows from (26) of (b) that

3
- 2 W oos () (k=123) @1
ae,-k

everywhere on B*, w here Ty, Ty, T's are the components of surface-force
density exerted upon X* by the coatiguous portions of R.
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From the definition of the stress vector in 10-1(b) it follows that T,
at any point of B* is identical with the x; component T'.. of the stress
vector computed with respect to an element of area of B* at the point:
the positive normal direction # is taken as outward from R* TFor T, is
by definition the z; component of the force per unit area applied to R*
across B*; but the foree applied to R* across B* is exerted by the con-
tiguous portion of B on the positive (outer) side of B*. We therefore
have from the definition given in 10-1(b} that the z. component of the
applied force per unit area is precisely Tu; that is, T = 7., and{ihus,
according to (31), A

2 Wi

3 "\

=) Woeosng) ot (k-1 @
ae;k N
i=1 O
'5\ N ’

Since R* may be formed in any desired manseiwithin the body R,
we may choose B¥ so that it passes through an%\point of i {exclusive of
the boundary B) with arbitrary orientation at{the point. ln particular
we pass B* through an arbitrary point P*;o that its (outward} normal
direction coincides with the positive z, difection. In this rase we have

cos (n,p) = 1 and cos (n,j) = 0 ifj'yi'i)’; thus (32) reads
oW '

381,;_- o

T — SR (k=1223) (33)

Bince we may successivelyd;’i%ose p = 1,2,3, and since hoth members of
(88) are defined independently of the auxiliary surface B*, the relation
{27) of (b) is establishigd for all interior points of B. ‘The continuity of
the quantities invelved furnishes the validity of (27) on the boundary
surface B, as well,

10-3. GQQ&;ﬂ Aspects of the Approach to Certain Dynamical Problems

(@) ;[I{:a’."ﬁrst study of the transverse vibrations of a thin bar or of a
thip“plate we bypass the general dynamical equations (28) of 10-2(b).
The'véason for doing this lies in the nature of the approximations we can
afford to make in such vibrational problems. 'The general equations (28)
describe every minute detail of displacement as functlions of time and
position within a vibrating body, thereby providing (if we are able t0
solve the equations!) a description far more detailed than is generally
required for the bar or plate. We can well afford, for example, to ignore
the distortion of the bar cross sections during vibrational motion if the
cross-sectional dimensions are negligible compared with the bar's length
and—which is of no small significance—especially when refusal to col-
sider such distortion leads to equations which are reasonably tractable
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and which describe the essential features of the vibration with a high
degree of accuracy. The transverse vibrations of a thin plate, for exam-
ple, are generally accompanied by elastic waves which travel in the plane
of the plate but which, if the plate is sufficiently thin, may be ignored;
the essential feature of the motion resides in the successive shapes into
which the plane of the platc is distorted during the maotion.

In order to solve the dynamical problem imvolving a specific type of
motion of a given elastic body we first solve an equilibrium problem
which corresponds to the dynamical problem in the following sense; The
equilibrium strain configuration at any point must be representative of
the essential features of the instantaneous strain configuratioh, &b any
point of the body during vibration. Actually, solution of the squilibrium
problem needs to be carried only far enough to provide d.caleulation of
the strain potentisl-energy density as a funetion of the position and dis-
placement variables in terms of which the essenfial features of the
dynamical motion are to be described. Once an.@xpression for the total
potential energy is available, together with the/@orresponding expression
for the kinetic cnergy, Hamilton’s principle :r}ay be applied in order to
derive the pertinent equations of motion AnHl boundary conditions.

The specific manner in which simplifging approximations (which ignore
all but the essential features of the-Wiotion under study) are introduced
is illustrated below in our studies\of the vibrating bar and plute. We
merely state here the underl(iﬁg principle by means of which the most
important approximations @r¢ effected: We make the very reasonable
(and successful!) assumption that the stratn potential-energy density at any
potnt depends only on the'esseniial features of the instantaneous configuration
of sirain at the poini dnd not wupon the specific agencies which induce the
sirain. The usefulniess of this assumption is greatest, clearly, in thosc
cases in which §he features of the strain configuration which are cssential
to the prohlera’at hand are easily distinguished from the unessential fea-
tures; th,(\zf],:sttter are thus readily ignored. (The validity of our assump-
tion admittedly, is extremely weak in the close neighborheod of points
of applcation of a straining agency, but this fact is unimportant if cer-
fain linear dimensions of the vibrating body are large compared with the
distances over which straining agencies are applied. The limitation does
not concern us in our study of long, thin rods and thin plates.}!

(b} From Hooke’s law (10-1(d)) and the result

f”i = Ts  (4,k = 1,2,3, independently) (34)
de_ﬁ;
'Our assumption is very closely linked with the celebrated principle of Baint-
Venant.  See, for example, Sokolnikoff, pp. 95, 99.
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derived in 10-2(d) we may establish the general form of the strain-energy
function W. Sinee the stress elements Ty are linear homogencous fune
tions of the strain elements ej, according to (9) of 10-1(d], it follows from
{34) that IV contains no terms in the e of higher order than quadratie
and no terms which are linear in the ex.  Morcover, In requiring that
W vanish in the unstrained state, we set the arbitrary additive constani
equal to zero. Thus wo conclude that W is a homogencous quadratie Tune-
tion of the strain elements ey (5,6 = 1,2,3, independently), so that we

may apply Euler's theorem (2-5) to obtain A
" K N
NN R\
W= Z Z e O ey
J=1k= ! T

|

With (34) equation (35) thus becomes the explicit f(.ufui'ﬁl:l

= ZJ: ZS: Jk"':}‘ ) (36)

A form of (36) more useful for pmpusos belou ¢ obtained by substi-
tuting for the ey, from the Hooke's ls;\» vequations (107 of W-1{d):

£ iy ]- e ..
W=2—E(if:+ié2+T§a)+-—*’(70+2 + 7))
S
)  — Vi (Tlszz b ToaT'ss + TasT10). (37)

\\
10-4. Bending of Z Cylmdncal Bar by Couples
@) We CODSId&( il homogeneous isotropie bar of unstrained eylindrical
%y \“\ shape with plane end faces perpen-
O\ dicular to the generators of the
cylinder. Any plane section of the

’ Ty bar parallel to the end faces we

_______ ! z call a cross section. A cartesiar;
— coordinate system is sef 11p so that

[ —— one end face lics in the wiz: plane
Frc. 10-1, while the other is in the plane

g3 =L > 0 (see Fig. 10-1). The
origin is so located that the z; axis passes through the centroid of every
cross section; 4.e., we have for each eross section

[fxl dxy duy = ffiz daydey = 0 {xy = constant), (38)
o !
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where the integrals extend over the domain D of the eross seetion. The
orjentation of the z; and 2. axes is such that each is parallel to one of
the two principal axes of inertia of every eross section; 1.e., we have for
each cross section?

f/ﬂhﬂ?z dry deg == (s = constant). (39)
B

(b} We proceed fo investigate the clastie-displacement configuration of
the bar when the system of stresses ’ Q

Ty =Ty = Ty = Ty = Tn =0, Ty = Pz, \' \"‘\(49)

prevails; P is a given constant, positive or negative, (lf,'f\ > 0, the
stress distribution clearly describes tension in the T3 direc;-ibn for 2, > 0,
pressurc in the x; direction for z, < 0; there are no p;’eéﬁﬁres or tensions
in the z, or z, directions and no shearing siresses ahgwhere. Thus the
portion of the bar lying on one side of the plane 22550 is stretched, while
the remaining portion is compressed. The st;gs’{s‘ systera obviously arizes
as the result of the bar’s being bent in théxdes plane.) We completely
neglect body forces? (Fy = Fy, = Fy = 0)',',3’04:}1&6 direct substitution into
(30) of 10-2(e} verifies that the distribution (40) is consistent with elastic
equilibrium. ONY

To ascertain the surface-foree distribution required to give rise to (40)
we note first that on the luterg!\(¢ylindrical) surface of the boundary we
have cos (n,3) = 0, so tha.to"zic’cording to (29) of 10-2(a),

X\

Ty = Taoecos (@) + Tacos 0,2) =0 (k= 123),
because of (40). Tl'ra‘t i's“, the lateral surface is completely free of external
agencies. Next’,\o} the face 13 = L we have

;&s '(n,l) = cog (n,2}) = 0, ¢os {n,3) = 1,
80 that Lhe é%znera.l boundary conditions (29} read
T=@i %0, ToorT,- 0, Ty=Ty=Pr (z3=1L), (41)
because of (40). Similarly, on the face x5 = 0 we have
Ti= =Ty =0

! The prineipal axes of inertia of an ares are defined as a pair of perpendifzula_r lineg
in the plane of the area which interseet st the centroid and whosc orientation is such
that the integral in (39) vanishes; x, and =z, are coordinates measurt‘advfrom the respec-
tive lines, The appropriate orientation ean always be found, _b.ut it is not necess.arl.ly
unique; any pair of perpendicular dismeters, for example, are principal axes of a circle,

? The influcnec of gravity is generally negligible,

Ty= =Tp=0, Tiy=—Ty=—Pry (@s=0); (42)

?
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the change of sign results from the fact that cos (7,8) = —1 on the fage
z3 = 0.
The fotal external force on the face ¢z = Lis zero; forsince T, = 7, = 0,

the force on z; = L is obtained by integrating the cumpunent T3 of
surface-force density over this end face. But, with 7, given by {41),
we have

[ng dzy dzy = Pffxg daydws = 0 (24 = I),
o D "\
according to (38) as applied to the end cross section.  Simjlarlg) Eoivith the
aid of (42) we find that the total force on the end face U\h flsc zero.

The total effects of the surface-foree distributions {Lh Hud (42) are
best described in terms of their bending moments ab&ut #he coordinate
axes. By definition the three components M, Mo, ,%{3 of the moment of
a given surface-force distribution Ty, 7%, T's aregiven by

A
iy = [[ (T ~ Tw)as, M, = f (T {2 Towyds,
B

m ~f (Tats — Tn)dS, (43)

* .’.

where the integrals extend over ‘thc surface B at which the surface-force
distribution is applied. Thugthe moment components of the distribu-
tion {41) on the end face gn*s\= L are

My ——',‘I?U‘Yxﬁ deidey = PJy (% = L), (44)
ne g/

AN/

’t\..
\'xu\‘ Jl = ffxg dﬂ:l dﬂ:'z (45)

is by deﬁmtlon the area moment of inertia of the face #; = L with respect
to\ta principal axis parallel to the z, axis;

where

My = —Pffx,xld.x, dzs = 0,
b

because of (39); and M, = 0.

It therefore follows that the total effect of the distribution (41) upon
the bar face z; = [ is that of a bending moment of magnitude PJi
directed along the 2, axis, Moreover, since the moment of the surface-
foree distribution on zs = L is unchanged® by any translation of the

! The proof is left for end-chapter excreige 6.
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¢y axis parallel fo itseli, the bending moment is termed a couple about
the #; axis; the magnitude of the couple!is PJy. Similarly, we find that
the surface-force distribution (42) on the end cross section z; = 0 gives
rise to an equal but oppositely directed couple —PJ; about the ; axis.

We note that the quantity J,, given by (45), is purcly geometrical in
character and is a constant which is the same for every cross section
{xs = constant) of the bar.

{¢) Using the Hooke’s law equations (10) of 10-1(d}, we derive from
(40) the strain-tensor elements ~

gr = 0] # k), 211 = figg = — %«’62, 833 = %Cﬁz‘.\:\ (46}
NS ©
which describe the state of strain within the bar under’c.@pgideration.
Through direct substitution into (12} and (13) we veri;"}j%-hat the strain
elements (46) sutisfy the equations of compatibilify-and are therefore
suitable for the description of a physically feasiblé\gtate of strain.

We now proceed to demonstrate that the bapdu’which the strain dis-
tribution is given by (46) is one which hag@ndergone bending in the
#2%y plane.  Specifically, we show that cyery/line parallel to the length
of the bar in its unstrained state—i.e., gyery linc described by the equa-
tions i1 = constant, x; = constant—i4n the strained state a parabolic
are lying in a plane parallel to the ﬁ,m:; plane,

Firgt, to prove that any lingzi = constant, z; = constant becomes a
plane curve parallel to the z28; plane, we must show that %y is a constant
with respeet to x5 for g'.\re{i..éonstant values of z; and 2z,. That is, the
displacement u, in thee, direction must be the same for every point of
the line in questionsy Second, if we prove that u. is, for given constant
values of x; and xz‘,’at\ quadratic function of z;, we thereby show that any
line 2, = constan ," x, = constant becomes a parabolic arc in a plane
parullel to thewrsss plane; i.e., we have merely to show that (8%us/823) is
independeithof ;.

Witlhythe definition (5) of 10-1(c) of the strain elements in terms of
the xﬁgpfacement derivatives the relations {46} read

‘?_1‘*_14_531‘2:% dus _ dus | dur ) (47)
dze.  dx1 9z azy O s
ous _ouy _ _oP du_ P )
dz, Oms E *5 dxs K :

! The refercnee here to the concepts of moment and conple ig actually unessen‘tial
to the eontinuity of this chapter. The reference merely aims to supply a physical
picture of the husis for the stress distribution (40) for the reader who is already

acquainted with the concepts. :
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From (47), (48), and the reversibility of partial differentiation it directly
follows that

au g {duy d aP _
a%(ﬁf%‘a&?;(‘ﬁ :553('73‘“) =0 (49)
du d {dus a {dusy a (P _
ai(a—) - ‘:r(s“) - ‘%:(aa‘) o7 a—(,) -4 &
o fom) _ 8 fow) _ _ @ (aw) _ @ (ag)
@_%(557—3) = (a—ﬁz) T dm\dw /S duy \ 81y
_@(%%:aggzﬂi@@
9y \ DL dary \ by é@ 9z:/

whence £\

i} dity " )
(o) = X @
A

With the results (49), (50), and (51) we concludg that (an,/dxs) is a con-
stant independent of x,, z,, x1. By arrangi.n.g:tlm ortentation! of the
strained bar in such fashion that (3u,/ axQ‘% 0 at o single point, we
therefore have that \®

P _ o A\ R

6$3 &N
Or, along any line 2; = constanp,fa;:é = gonstant, we have u, = constant;
this proves the assertion of the preceding paragraph that any line parallel
to the length of the bar in/bhe unstrained state becomes a curve lying ma
plane parallel to the rwaplane as the result of strain.

That this plane cutye is a, parabola follows directly from (47) and (48),
for <"

g ’\a 9a 0 fdus 8 f ous P
SALCPR) BY (il RN . LY (i) R 1)
90§, 023 \ 65 dx3 \Jxs o2 \ %3 E
O\

We tl}};ﬁ?;hm‘@ that w» 18 a quadratic function of 2,

,.(d:) In accordance with the method outlined in 10-3{a) we proceed o
compute an expression for the strain potential energy of the bent bar
which depends only on the sfrain configuration and not upon the agency
which gives rise to the strain. Substituting (40) of (b) above into (37)
of 10-3(b), we obtain for the strain potential energy per unit volume

P 3)
W = — zl (5
28
! The geners) solution of the gix equations (47), {48) contains six arbitrary constants

which may be evaluated by specifying the position and orientation of the sprained
bar ax @ whole, See exercise T at end of chapter.
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To obtain a quantity which is of direct use in 10-5() below we integrate
{53) over an arbitrary cross section D' (z; = constant) of the har to
obtain the potential energy per wnit length of the bar

, P? y
Wy = f f W dwyday = o j] 22 diy dxy = 1’2;;1, (54)
1] ]

where Ji, defined by (45) of (b) above, is the area moment of inertia of
the cross section with respect to ifs principal axis parallel to the z; axs.

Finally, to eliminate the dependence of Wy on the constant P in'fgvor
of a quantity which describes the loeal bending configuration of, the bar,

we substitute from (52) into (54) to obtain £\
_ 1 2y ! ~.("".
WL"EEJ]_("&?}%)' D (55)

/N

We employ the result (55) in 10-5 below in the study'of transverse vibra-
tions of a bar; discussion of the validity of its\}Se is reserved for that
section. (The product £J is called the flegwral rigidity of the bar with
respect to bending in the zyz; plane.) >)

A fuller discussion of the bending ofed bar can be found in the litera-
ture.! Further development of theforegoing results is left for the end-
chapter exercises. ‘f:’o '

10-6. Transverse Vibratiqnsgof a Bar

To derive the equatioh® of motion and boundary conditions for the
transverse vibrationg fya bar we appeal, as in the case of the vibrating
string and the vibré#ing membrane, to Hamilton’s principle (6-2) as
applied to a systet involving a continuous distribution of mass. It is
our first task,(then, to obtain expressions for the kinetic and potential
energies of £he bar.

(a) W,chbnsider a eylindrical bar, or rod, free from {net) .longitudinal
presstie-or tension, the linear dimensions of whose cross section are small
compared with its length. As in 10-4, we ignore the influence of body
forces, The only external influences to which the bar is subjected are
constraints which may be applied to one end, both ends, or neither. We
consider chiefly two types of constraint: (i) The “hinge,” whereby the
effect is merely to hold in fixed position the end of the bar to which it is
applied; the orientation of the bar at this end is not influenced by this
type of constraint. (i) The “clamp,” whereby the effect is not only to
hold the end in fixed position but is also to fix the orientation of the bar

! Bee, for example, Sokolnikoff, Chap. 4.
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at the end to which it is applied. We suppose that the vibration ig
parallel to a principal plane of the bar—i.e., to u plane which containg
one set of parallel principal axes of every cross section of the bar,!

In considering the transverse, or flexural, vibrations of the rod, we
ignore the possible distortion of the cross sections and suppose that each
element of volume contained between two closely neighboring eross sec-
tions moves as a rigid entity. The validity of this simplification rests
upon the assumption of small eross-section dimensions mado in the pre-
ceding paragraph. If the cross section is small, the contribution %o the
bar’s potential and kinetic energies owing to its distortion may .be neg-
lected. It is this neglect which enables us to use the formule (55) of
10-4(d) for W, the potential energy per unit length of he bar: The
potential energy is assumed to depend only on the configitvation of bend-
ing in the plane of vibration. R4 (s,

In accordance with the assumption that each erbss-scotional element
of volume moves a5 a rigid entity, we may c iploy o single variable to
describe the shape of the bar as a function Wb the longitudinal distance
from one end and of the time variable ¢, \N(Ebr this we employ u = u(a)
to denote the transverse displacemcnt.off,a’poiut of the eentral line® rela-
tive to its equilibrium position; herg¥his the distance of the point from
the end designated by z = 0; thefther end of the bar is at » = 1.

(0) If we denote by v the cofistant mass per unit length of the rod,
the translational kinetic enetdy of the volume element of thickness de
at & is $uty dx, so that th@“t\otal kinetic energy is

N\ .
T‘——%vﬂ) % dx. (56)

In employing\'th% expression (55) of 10-4{d)—which, in the notation
of the present-section, reads '

O\ 1 %\’
Q v = g5 (5)

— ’61\;t~}:ie strain potential energy per unit length of the bar, we have for
theYotal potential energy?

V=48 [Ful, s (57

With (36) and (57) the Hamilton’s integral (7} of 6-2(a) becomes
: fL .
I=4 j: .{0 (y#? — EJ 1l )dz dt. (58)

! Bee footnote 1, p. 213, for the definition of principal axes of a cross aection.
z Th(‘-: central line js the locus of cross-section centroids. .
? A in preceding chapters, we employ subscripts to indiente partial differcntistion.
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According to Hamilton’s principle. (6-2) the extremum of I with respect
to functions w(x,f) which deseribe the actual bar configurations at ¢ =

and ¢ = t; is supplied by the particular u(z,%) which describes the bar
configuration for all 4.

Possible end-point conditions which must be satisfied by the functions
eligible for the extremization of (38) depend upon the physical constraints
which may be placed upon the ends of the bar. We consider the follow-
ing possibilities:

(i) Free ond: If either end of the bar is free, no constraint is mad
upon the displacement u or the slope %, of the bar at that end. Accord-
ingly, both % and w,, evaluated at a free end, are eompletely arbltlzgny if
# i3 an eligible funetion. 2%

(il “Ilinged” end: Here ihe constraint is such as to prescribe the
value of %, whereas «, is arbitrary for the eligible functlons . 3

(iil) “Clamped™ end: Ilere displacement and orlenta‘t]bn {slope) are
both preseribed, so that the eligible functions « mhdtbe selected from
among those which have particular given values 0@01;11 u and u, at the
end in question, R

Any onc of the conditions (i) to (iii} max, pi‘evall at either end of &
given bar, independently of which of thes three applies &t the other end,

For the process of extremizing (58)“we form the integral I{¢) by
replacing % in the integrand of (38)“by the one-parameter family of
somparison functions {7 = u(z, i)+ en(z,f), where u(z,?) is assumed to be
the actual extremizing functionfand 4(x,t} is arbitrary, with the exception
that g(x,4,) = 9(x,ls) = ()—a\ﬁfe’quircment of Hamilton’s principle. Fur-
ther, » may be subject o énd-point conditions, depending on which of
the conditions (i) to (111) hst(‘d above happens to be imposed. Briefly,
we have at a .

('} Free end; qparbltrary s

(it nged@d 7 = ), 5. arbitrary -

(iit") Clam’;}ed end:n =0, 7. = 0.

Cleaﬂy,’g(e) ig an extremum for ¢ = 0, so that

V P(0) = 0. (59)

Noting that (0U/d¢) = 4 and (8U../8€) = 9asy W form the integral
I'(¢), then set ¢ = 0 by replacing U by @, Us by .. Thus, with (59),

we obtain
o< [ (e

where, for abbreviation, we write

i = }yat — BJug,).

,,,:) dx di = 0, (60)

(61)
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Since 4 = 0 at ¢ = ¢; and ¢ = 4, integration by parts gives

iy Lé‘f 3 L a (.U.>
fﬁ gut @i == | | gz ded (62)

Also, we have through twice-performed integration by parts
L L i
oo = | [, 2 (ﬁ_) i
ﬁ 6_?;‘,; Nar AT = [61{:: Nz 0 0 Bz 6z \Ou,, T
af a { ar\1* . 0 _f’.[) ~
a [m T né}(au“)]u + a K ozt (')‘un Eii‘ (63}

7\,

With (62) and (63) equation {60} becomes X O

ta af B __6_ af)]L ' 'f N
‘o 1 7oz uz:/ g "

_ ﬁ . [,(% (é’%’) -2 Q%)] d:z:} dt =0, (64)

for arbitrary choice of the function n(xzé)::\consisteut with restrictions
placed above., 8ince (64} must hold for'those 5 which, together with Nz,
vanish at ¢ = 0 and ¢ = L, it followsMrom a simple extension! of the
basic lemma of 3-1(¢) that A\

N

(o _ o7 fnaf\ 5
a (:aa,) - a}?ﬁﬂ) -0 Os=s=D) “

Moreover, if 4 and Mg g%ﬁl:bitrary at bothz = 0 and » = L, it follows?

that the coeflicients of 3(0,2), (L8, 72(0,8), 5.L,8) all vanish separately.
By writing, accordifigly,

€N, 4 af _ . B
0 ng (auu) =0 @=o00), (66)

we talge\'inzt-o aceount the possibility that either or both of 7, 1. may be
req{:?d %0 vanish at either or both of * =0,z = ,—in which cvent the
corregponding coefficient in (64) need not vanish.

Substituting (61) into (65), we obtain the differential equation of
motion of the vibrating bar under consideration;

32y iy -
YoE TELSL =0 (O=esI) (67)

! Bee exercise 10 at the end of this chapter.
* The proof is left for the reader. Ree, for example, the argument leading to the

result (76) of 3-10(a); the argument must he slightly modified and extended for the
present case,
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The end-point conditions (66) read

Fu %y

217 =0  (z=0L) (68)

{¢) The most important examples of constraint of the end of & vibrating
bar conszist of hinging which renders the end-point displacement equal
to zero, and clamping which renders both the end-point displacement,
and the end-point slope equal to zero; we confine our sttention to these
fypes of constraint.  With the aid of (68) we list the boundary conditighs
which apply to these constraints as well as to the case of a free endvof

the bar: <O
(i) Free end: Sinee both 4 and 5, are arbitrary at an unconstr&i}led end,
(68) implies that ) N
atu du R
Erc il a5 = ] (free end¥ (69)

(i) Hinged end: Since #, is arbitrary, (68} inib\ll'es that its coefficient
vanishes. Since, also, the displacement of @h’{e,}nd is maintained. at zcro,
we have Y

2 N ’.’“ .
‘;_x?g =0, u=0.\" (hinged end). (70)

(iii)y Clamped end: Ilere, bath L{iéplaccment and slope are maintained

at zero, 50 that x”z\

% = Q,\\ u==0 {clamped end). (71)

_ 10-8. The Eigenva{fﬁé—Eigenfunction Problem for the Vibrating Bar

(2) We begimthe attack upon the vibrating-bar equation (67), subject
10 any of t-hé,‘%dundary conditions (69), (70), (71) applied independer}tly
at « = 0. 4nd 2 = L, in the manner in which we bandle the vibrating-
THembxglﬁ,}{ equation in 9-4(a); that is, we seck solutions of the form

3
N u = g0, 7
where ¢(z) satisfies one from each of the two groups of end-point comn-
ditions which follow:

i) ¢"(0) = ¢ (0) =0 (free) (i"y ¢(L) = ¢'""(L) = 0;
() ¢0) =¢” (0) =0 (hinged) (i) o) =¢"(L)=0; (73)
() ¢(0) = ¢ (0) =0 (elamped) (@ii") oL} =¢ (L) =0.

{For example, if the end # = 0 is clamped while 2 = L is frge, $l2) St}ti's_-
fies both (iii) and (i*).) For convenicnce we suppose that ¢ is normalized
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so that .
L
j; ode = 1. {74)

Substituting (72) into (67), we obtain, on dividing through by ygg,

E Jl ¢r.rrr q
e 75)
Yy ¢ q : _( )
Since the left-hand member of (75} is independent of ¢ und the right-hand
is independent of z, the two mernbers must he equal Lo a constant, Srhich
we denote by . Thus(75) implies the two ordinary differential équations
| EJ1¢"" — yA¢ = 0 O e

and RO

2 =0 AY

In (5 below it is shown that X > 0 {(with the e\copt( ¢ possibility of
*» = 0 if the bar is free at both ends or free Atone end and hinged at

the other) so that the general seclution of bﬁc time-dependent eguation
(77) is ¢

(77)

g = A cos v\ l‘j?;B sin VXt (78)

where A and B are arbitrary cmw}:’?.n%s‘

(b) The determination of the* permissible values of A -and thus,
according to (78), the list of hatural vibration frequencies of the bar—
is an eigenvalue- eigenfu{éb}on problem of the type encountered in the
three chapters precedmg That is, any value of A for which there exists
a funetion ¢ which satdsﬁes (76) and (74), together with the appropriate
set of end-pomt eondltlons from among (73), is an eigenvalue of A; the
solution ¢ is jhel correspondmg eipenfunction.

Txphicit shlnmon of the eigenvalue-eigenfunction problem for the bar is
left, for the end-chapter exercises, but we prove here that there can be no
npgatn’e elgenvalues of A--a fact used in arriving at (78):

Wlﬁh the assumption that ¢ satisfies (74) and (76), we multiply the
latter by ¢ and integrate from z = 0 to ¢ = L to obtain

A = le ﬁb”” dz. (79)

After two successive integrations by parts (79) becomes

K EJ[ Jl[¢¢”r ¢ ﬁb”}b __;r_ f (¢N)2 dﬂ:} (80)

Tf, further; ¢ satisfies any set of end-point conditions from among (73}~
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one from among-each of the two groups—-the initegrated part of (80)igdeen
to vanish; it therefore follows that A = 0, since E,.J,, v are all positive.!

(¢) The sequence of eigenfunctions ¢u, ¢y, . . . Yy éw, . . . for the
vibrating bar form an orthogonal set'in 0 < ¢ < L with respect to g
constant weight funetion. That is, if ¢; and ¢, are two different eigen-
functions of the problem, we have ' : ' :

L '
L Gitndz =0 (I, (81)

To prove (81) we multiply the equations satisfied by the two eigef™
funetions—namely, according to (76), N
_ ' ¢\
B¢l = vy, - BI1¢)" = vain Oy 82
—by & and ¢, respectively. Subtracting the results and ‘iﬁtegrat,ing
from # = 0 to z = L, we obtain s

AV
L L O
v — M) _L ¢; drdz = BEJ, _L (07" b — & d:f{”}d\x’ _
= EJy (¢ ¢ — ¢;¢;’o\%.\¢§¢;’ — ¢/ ailk, (83)
as we find on twice integrating by parts eachuperm of the integral on the
right, But if ¢; and ¢, satisfy the same 56t of end-point conditions from
among (73}—as they must, since they,are assumed to be eigenfunctions
of the same problem—it is clear that ‘the final member of (83) is zero.
Thus, since 3; = A if j = k—a fack proved in excreise 14 at the end of this
chapter—the orthogonality (E}leollows directly. . S
A second proof of the rt}@oéona.lity is based upon the fact that the
eigenvalue-eigenfunetion p%blem for the vibrating bar is equivalent to
an isoperimetric probie\ni."q' Namely, an extremum of the integral
\ R £ 2P . N
. A CHE (5)

'$)

with respect, ‘};I;}unctions ¢ which satisfy the normalization condition

i3 effected by a function ¢ which satisfies the differential equation (76).
To verify this fact we use the result of exercise 9, Chap. 4; namely, if
we introduce (y/EJ,)\ as undetermined Lagrange multiplier, the extre.m-
zation process leads us directly to (76). - Further, if at a given end point
@=0o0rz=~L)noa priori restrictions are placed upon the functions ¢
eligible for the extremization of (84), the extremizing funetions must
* Proof that X = 0 can hoeld only in the cases of a bar with both ends free or one end
free and the other hinged is left for exercise 13(c) at the end of this chapter. -
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satisfy ¢ = ¢'" = 0 at that end; i.e., the free-end conditions (i} or (i)
of (73) must be satisfied. Similarly, we sce that the appropriate end-
point conditions for a hinged or clamped end must likewise be satisfied
by the extremizing functions. For example, at a hinged end, the fune-
tions eligible for the extremization must satisfly ¢ = 0, while ¢' is arbi-
trary; according to exercise 9, Chap. 4, we obtain the additional condition
¢'' = 0 at the hinged end for the extremizing functions—in accord with
(ii) or (i") of (73).

For the orthogonality proof we use the result (73) of exercise 9, Chayp, 4.
Namely, we have ~

L N
t 1 YA e\
J (o = 35 e)ac =, »o

L W

where ¢ is any extremizing funetion with X the correspahdiny eigenvalue
and y is arbitrary, cxcept that it must satisfy any{d/prior{ end-point
restrictions which may be placed upon the eligibleJutictions ¢.  In (85)
we may therefore write ¢ = ¢, A = A;, n = d¢ aud then rewrile the same
result with the indices j and & interchangqc( (} # k). Subtracting the
two results thus obtained, we get N\

!‘ .. \ o
T R
A M)fﬂ B de = 0,
whence the orthogonality?! (81} foifows, inasmuch as A; 74 Az

10-7. Bending of a Recta@ibxlar Plate by Couples

The problem of the‘t}a\nsverse vibration of a thin plate is most easily
approached throughyprohsideration of the bending of a rectangular plate
by couples applied\at its cdge surfaces. Just as the problem of the bar
bent by couplgs\(l{]-ﬁ] leads to an expression for the strain potential-
energy funghipa applicable to the theory of the vibrating thin rod (10-6),
50 also does the study of the rectangular plate bent by couples lead to a
suipablé‘ potential-energy function for the vibrating thin plate. In both
cafes) the counection between the static problem and the corresponding
vibration problem is developed on the basis of the geueral principle
enunciated in 10-3(a).

(0} We consider a rectangular plate of uniform thickness 2h situated,
in its unstrained state, with its middle plane in z; = Q; thus the faces of
the unstrained plate lie in the planes zy = =+ A, respectively. The bound-

! The main adventage of the second proof is that no explicit mention of the boundary

(end-point) conditions is required—an advantage of great significance in the demaod-

stration (10-9(b) below) that the vibrating-plate eigenfunctions form an orthogonal
get.
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ary-edge surfaces lie in the planes g, =0, ; = Ly, 23 =0, 23 = L,,
respectively (see Fig. 10-2).  We neglect the influence of body forees.

With proper regard for the altered orientation of coordinste axes, refer-
ence o (40} of 10-4(b) reveals that a state of stress in which

Tas = Pars (Py = constant), (86)

with Ty = T4 = T1» = Tay = Ty = 0, describes the hending of the
plate as if it were a bar extending in the z, direction. As described in
10-4(c} every line 2; = constant,
zy = congtant (in the unstrained
state) 13 strained into parabolic
shape in a plane parallel to the z.x,
plane. According to 10-4(b) the
bending results from a pair of equal
but  oppositely directed ecouples
about the x, axis,

Further, we superimpose upon %%
the bending of the plate deseribed
in the preceding paragraph an ad- O\
ditional bending which arises from a pairiof equal but oppositely directed
couples about the x, axis, That is,' wg withdraw the condition Ty = 0
and replace it with \

‘ ) Fra, 10-2,

~

Tn = P1:’Cg~" (Pl = CDDStal’lt). (87)
We proceed to investigate #he condition of the strained plate under the
system of stresses giveu‘}:ﬁs\(Sﬁ), (87), and

~\.T§3. = Tlg = ng = Ta] = 0. (88)

Substitution ofj\(SG), (87), (88) into (30) of 10-2(c)—with F, Fy, Fy
set equal to zefo) sinee we ignore the influence of bOfiy fOl'GEEE—"VBI‘IﬁE.BS
directly tha{“the given stress distribution is consistent with static
equilibrigady® . ‘ ‘

(b} 'Tb..ziscert-ain the surface-force distribution whieh gives rise to ’the
stress\dibtribution (86), (87), (88) we employ (29) of 10-2(b), from which,
together with (88), it follows that the plate is completely free of surface
forces on the faces 2, = +h Further, we have from (86), (87), (88),
and (29) that .

Tl = T11 = Ple, Tz = Ta =0 onzx = Ll}
T:= Ty = P, Ty=1T:=0 on £y = Lo, (89)
T = —Tnh = —Plﬂis, TS""TS:O 011:81-_—-0,
To= —Ty = —~Pyxs, Ty=T;=0 onze =0,

sinee cos (n,1) = 1, cos (n,2) = cos (n,3) =0 onx = Ly, ete.
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The total force on the face 21 = L is given by

f_hh Oh Tidesduyg = Py f_hh j;m T3 dae dyy = 0,
according to the first line of (89). Similar computations revesl that the
total foree on each of the three remaining edge faces ig likewise zero,
From the definitions given in (43} of 10-4(b) we find the effect of the
surface-foree distribution on 2y = L1 (first line of (89)) to be a bending
moment "N\

kL . ko fLe N
_i}fg = f—l.ﬁ o Tm:a dxg dxs = P1 [__;L x_: dﬂ?z da:n = %R}L\;hr‘

about the w; axis, with an equal but oppositely directe\d»i’pc;ment atising
irom the surface-force distribution on the fage x1 = fthird line of (89)).
In similar fashion we may show! that the _surface;-fbr\ce distributions on
22 = Ly and za = 0 are respectively deseribableNR terms of equal but
opposite bending moments of magnitude $R3L:A* about the z; axis.
(It 1s left for exercise 17(5) nt the end of this“chapter to show that each
of the four moments is a couple, as defipedvin 10-4(p).)

(¢) Using the Hooke's law equatiaits .(10) of 10-1(d), we derive from.
{86), (87), (88) the strain-tensor elﬁ}?’l&flts -

. \y 1
e = 0 (F =, k),' €11 = 7 Py~ aP2)xs,

: Q . (%0)
€ga = E (Pg\—‘\iﬁPi)xs, €33 = — "E‘ (Pl + Pff)x3'
Substitution of (90); into (12) and (13) of 10-1(e) verifies that these strain
elerents satisfy ghe compatibility equations and are therefore suitable

for the descrgmiio of a physically feasible state of strain.

In the m@ner of 10-4(c)—with the details left for end-chapter exercise
18—we £an show with the aid of (80) and the definitions (5) of 10-1(¢)
thai gvery unstrained line 2, — constant, ©3 = constant is bent into para-
bu{c‘shape (in a plane g, = constant) for which

aZuS i
9 = T Pr—aly). (o1
Also, the lines 2, = constant, £3 = constant become parabolas (in planes
%z = constant) for which
- 32u3

oy _
a?:“‘E(Pl-—JPs)- . 92)

1 Ben exercige 17(a} at end of chapter,
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Further; we obtain the result

el (03)

from which we ascertain, by definition, that the planes of principal curva-
ture of any plane z; = constant are respectively parallel to the zx; and
zizs planes.  This fact comes in for special consideration in the deriva-
tion in {(d) below of the strain potential-energy function applicable to the
study of the vibrating thin plate. ' ~

(d) In accordance with the method outlined in 10-3(a) we proceeds to
compute an expression for the strain potential energy of the betibyplate
which depends only on the strain configuration and not upon tHe agencies
which give rise to the strain. Since we wish to apply the. yesult to the
vibration of thin plates of arbitrary shape, we must obpajfl ATl expression
for the strain potential energy which is independentof‘the orientation
of the z; and x: axes. Even in the case of a rectiadgnlar vibrating plate
we cannot be surc that the planes of principaledrvature will at every
point he respectively parallel to the s and yx; planes—a fact upon
which the results (91), (92), (93) of (c) abeye’depend. -

Substituting (86), (87), and (88) intq '(37'} -of 10-3{b), we obtain for the
strain potential energy per unit volymies :

W = on (PFF P} — %PPya

Integrating over the thickti:és\s of the plate—irom z; = —k to 23 = A,
that is—we obtain the Strain potential energy per unit area of plate
surfaee O :
NS s _ ,
Wi W dzs. = 3% (P} + P} — 26P1P3). (94)
& h

Solving (Qll%d (92) of (¢) above for Py and P, we obtain
L (M) (a_u)] 9
&2 5= [(a—x'{ + a—:cg) 20 -7 )z ) @

through substitution of the results into (94).

In order to free the result (95) from the- specifieity inherent in the
tircumstance (93) of () above we replace the coordinates @i, 2; by &
bair of cartesian eoordinates z, y related to zvand , through the equations

=2 cosQ—ysinQ, xg":xsinQ-l-yCOSQ-. (96)

Q, congidered arbitrary, is the angle through:which the 2 fmd g BXES
must be rotated about the x: axis to be brought into coincidence with
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the new x and y axes, respectively. Using the results of exercise 2(ab),

Chap. 9, we have
Bus | Ous _ O%us O
dx} s di? ay*

us g _ (( 0%us NP e %us (‘32’“3)2

‘8xt Azt ox1 e ax* ay’ dx dy/’
where both results are independent of the angle @. Thus, because of
(93), we may rewrite (95) as Q)

2 A% 8% 0% RTINS

wemg oG+ 5e) 200 | EeE - MH} o
—with % written for w; and Dy for [2R*E/3(1 — 0'2)]',,"31]‘1'{}1 =0 obtain an
expression for the strain potential energy per uni&{@z’mtc area which ig
independent of the orientation of the coordinate¥es lying in the middle
plane of the plate. The constant Dy is called the flexural rigidity of the
plate. ‘;,\
We employ the result (27) in the sect-igii:\\vhich follows directly.

and

10-8. Transverse Vibrations of a Thm Plate

{¢) In considering the transversd Vibrations of a thin plate, it is con-
venient—as well as consistent~with all of the stmplifying assumptions
generally made in a first appreach to the phenomenon—to suppose the
entire mass of the plate tqhe concentrated in the plane midway between
the parallel plane faces"of the plate. We suppose that in its equilibrium
position the plate cdvers the domain D with beundary curve ¢ in the
2y plane. The de¥idtion from equilibrium during vibration is deseribed
by the functiomu "= u(z,y,t}, where w is the transverse displacement of a
point locathﬁ\ﬁh equilibrium) at (z,y). Thus, if the constant mass per
unit are’aﬁ}\t e plate is u, the total kinetic energy of the plate is given by

~ J T = %,uffﬁz dz dy. (98)

N/ D

To obtain an expression for the potential energy of the plate, we employ
the assumption introduced in 10-3 {a¢) that the strain potential-energy
density at a point depends only on the strain configuration at the point.
With this assumption we may thus employ the expression (97) of 10-7(d)
for the potential energy per unit plate arca, so that the total potential
energy is given by

V= %Dﬂf[ (V)2 ~ 201 — o) (1eatty, — ul))]dx dy, (99)
7
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where V*u is written for (.. + u,,) and the subscripts indieate partial
differentiation.
With (98) and (99) we have for the hamiltonian integral (7) of 6-2(g)

I=4% fff{#u = Dil(v1)* — 2(1 = o) (warryy ~ uiy)]}dx dy di; (100)
D

according to Ilamilton’s principle (6-2(a)), ( 100} is extremized with, respect
to those functions u{x.y,t) which deseribe the sctual plate configuration
at = & and [ = & by the particular function w(z,y,) which desérfhes
the actual configuration for all £ Owing to possible physical constraints
placed upon the plate at its boundary edge C the functions u eligible for
the extremization of I may be required to satisfy certain conditions on C;
explicit consideration of such conditions is earried out in.fe) below.

(b} To effect the extremization of (100) we form thé integral I{e) by
replacing  in the integrand of (100) by the one-parameter family of
comparison funetions Y,

U = ufz,y,l) + enfmnd), (101)

where u(x y,#) is the actual extremizing’fuhc’tion and y(z,y,f) is arbitrary
to within twice continuous diﬂerenti@}{iﬂﬁy and the requirement (aecord-
ing to Hamilton’s principle) that n(zp) = n(e,y,z) = 0. Further, both
7 and/or its normal derivative (39¥9n) = n, (taken with respect to the
outward normal to C) may be subject to boundary conditions consistent
with restrictions on € imposed upon the functions eligible for the extrem-
ization of [; these are di&*ussed in (¢} below. It is clear that I(e) is an

extremum for ¢ = 0, 80.that
AY

N ') = 0. (162)
Writing \"\ '
O\ 5
F@ et is,) = ${ui? ~ Dof(V2)7 — 2(1 — o) (Ul — u5)]}, (103)
&Cﬂogﬁég\to (100), and using (101} to compute

OU.,s aly, U, = @ =
._65_— = Wiz, 3 = Npy, 3 Rays de i1}

we form I’(e) and then set e = 0 (replacing U by u, according to (101))
to obtain

o) =fff(;%n+ o qu+;inw+"—fnzy)dxdyd:=o, (104)
L

(T - Uy Oty

tecording to (102).
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. Through integration by parts over { we get

fh/fa—aiﬁdxdydt fff Bt( )drdydt

since n = 0 for t = & and ¢ = £,. To transform the final three terms o
(104) we employ the forms of Green’s theorem given in (25}, (26), ang
(27) of 2-13(e), respectively:

[iova- [ [0
9 { of of of

ff Gy e 0 = ff EACALE [”a—" ;%y (a)] “

/f nwdxdy“ff Bxay(di )d dy+ \-—-- (m dy — n.dz)

T [ [ax (aum{)% an( af)d”’} (105)

Further, we have direct use for the result

ot o of a2 (33
dz? (aum.) Y ayt (auy,,) T 324 6:0 Ay (auq,
1
6 {2 + d T:';:l — _Dnvz(vzu) — _Duviu“

as we find! on direct c‘{Kmputamon from (103). ¥rom (103} we also obtain

af .
o) 3t (Bu) = s

With the aésults of the preceding paragraph we may rewrite (104) as

/:: { ff\??( —uik — Deglu)dr dy

o~

vV ‘[ (af a{ of of 1 of
W AUE @)+§@(EL)] By, 2 6%]

of 1 of _ 3 { of af _ o
ol i o[£+ 12 (0) ] ) -0
(106)

the explicit expressions for the integrands of the line integrals along €
are obtained from (103) in (d) below.  Sinee (106) must hold for arbi-
1 The expregsion vy iy merely an abbreviation fur

THON) = (u” 4 wy,) + W (e + uw)
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trary 1, it must, in particular, hold for those y for whichy = 5. =5, = 0

on €. For such 5, (106) reduces to the infegral over D (in turn inte-

grated from ¢ = f, 1o ¢ = ta}; an obvious extension of the basic lemma of

3-1(c) vields the result
It _ .

LT +DWVie =0 inD (all}) (107)
ug necessary for the fulfillment of (106). The fourth-order partial differ-
ential equation (107) is thus, accord-
ing to Hamilton's principle, the
equation of motion of a vibrating
thin plate.

Derivation of the various sets of
boundary conditions for the vibrat-
ing plate depends upon the integrals
over (' which appear in (106). The

treatment of thesc integralsisgreatly A 7 “
facilitated by the transformations Y re 103
carried out in (¢) following. ANV T

(¢) While the use of the eartesian coordinates z and ¥ may be con-
tinued with profit in a problem invq],ﬁhg a rectangular plate, it is essen-
tial for more general purposes tosintroduce as coordinate variables the
are length s of the boundary curve C of D and the distance n measured
from C along the normal tol(" Given a point (2,y), we determine its
(n,s) coordinates by dra ’m:g the shortest normal to ¢ through (z,); the

interscetion of this notmal with ¢ determines the s coordinate of the

point, while the mgobrdinate is the distance from (z,) to C along t-‘he
normal (positivedigr,y) is exterior to I}, negative if interior). (See Fig.
10-3.) Clearly' it is necessary that through each point (2,y) there be a
uniquely determined shortest normal to €, which is the case if (@y) is
not separdted from C by the evolute of ( {locus of centers of curvature}.

Sinc-eg‘tﬁ- i)urpose here is merely to transform the line integrals along ¢

of (186}, this condition of nonseparation may be considered fulfilled inas-
in the evaluation of gquantities on

much as we employ the (n,s) system
C only—that is, for n = 0.1

If we represent ¢ in the parametric form & = #o(s), ¥ = ynl(S) anc‘i lot
@ = a(s) be the angle made by the tangent to € with the qutwe x direc-
tion,* we derive from Fig, 10-3 the transformation equations

VAt & corner of €' the normal direction is undefined. We assume that C _consists
of 4 finite number of smooth ares and thefefore possesses at most a finite number of

COrHers, ) o .
2 We neasure’ o counterclockwise from the positive 3 axis o the positive ehr‘ecfflon
{direction of inereasing s) of the tangent, - iWith this definition « 18 surely a continuous

funefion of s (0 = « < 2a), except, possibly, at a finite number of corners.
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x = ao(s) + = sin a(s),
y = yols) — n cos a(s). (108)
With the use of the elementary relationships
. d
%q = cOS &, %9 = sin a, d—:‘ = K(s), (109}
where K is the curvature of C, we obtain from (108) the partisl derivatives
@=sina, 8y . - COS @, ~
dn an
¥ - : A\
F (1 + nK) cos a, 3 {1 4+ nK) sin (x‘.\\
Thus the jacobian! of the transformation (108) is N
@Y Ly k. O (111)
a(n,s) )

We further obtain from (110) the equatlons\bf transformation of first
partial derivatives ~N

Un = s SN @ ~— Uy COS &, e = Qll -{- nK) (u, cos @ + 4, 8in a}.
Solving these equations for %, and *uy, we get

Uy = Uq SID @ + u,l _?_S:g Yy = —u, cos a + us-l%- (112}
{(We have occasion bel \\to employ the relations (112) with % replaced
by the function 4; the replacement is valid because (112) hold for any
differentiable funngon .}

To transform, setond partial derivatives to the (n,s) coordinate system
we employ, the pesult of 9-2(h), with the identification n = r;, 8 = 73 and
the suppresion of the third independent variable rs. With the use of
{112) we slecessively substitute

\ 1 : cos o |°
‘@ f—wu 2|unsma+u,-———1+nK};

. 1, 1 sine |°

(i1) f—zu,-—gl un005a+us=————l+n1(}

1 1 . o8 o sin ¢
i) f= 5 Ustly = 5 {un gin e -+ uamg} l —unc0S e + U T T R

into (22) of 9-2(b), with the jacobian—denoted by D in 9-2(b)—given by
(1 4 nK), according to (111). The results of these substitutions are

tBee 2-8(f). Also sce exercise 20 at the end of the present chapter for a discussion
of the required nonvanishing property of this jacobian,
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respectively
2 3

. o, sin? u, o5t @ ‘8in @ cos o

(i) sz = Una SIN* o + T+ nk)? + 21, T ak
cos? a 2K sin e cos @ |, nK’ cos? o

Ky s — == |

TR T [ T+ K7 05k

sin? a SN @ COS a

i3 == .. . 2 T —¥rva T w e
(i) %y = Unn COS a+u“(1+nK)2 2an 1T nk

2K sin a cos @ nK' sin? ce]
1

(113)
“"‘[ G+n07 (T k)P

gin® o

1+ nK

+ K,
N\

() sy = —tur il @ COS @ + U sin & Cos & L sin? o — cos’a
Ty e W g 11 (1 _+_ ?'LK)E 51 -l + nK\T.

+ Ku,

sin @ cos & \:K(cos2 o« — gin? @) nK' sind cos a}
Tk T T ek PR [
where K/ = (dK/ds) = (@a/ds?). Tn all that follogs our use of the
results {113} is restricted to the boundary curve C—thiat is, for the special
case n = 0. ,*'.\\'

(@) In applying the results of (c) to the transformation of the line inte-
grals of (108), we first note that along CWe have n = 0, dn = 0, so that,
according to the sccond line of (110}, (X%

do = ds oos @,  dySdssina  (along ). (114)

Yurther, we have on direct (aIthdugh somewhat lengthy) computation
from (103), with the aid ofxgl?til), that

N
)2 (D ()
59 \duyy) T 200 \pn/ | T L0w \Gue) 20y \Oer
'I N a
= DQ.LQ;\{& % (thes + Ugy) — C€OS 5 (e + Uys) | dS
A4

N (115)
i * )
thedinal form of (115) springs from the fact that

o exad , oyod _ . 98 _ L
— 24 . = glh aax cos L\an!

3n _ onoxr onody

according to the first line of (110).

Setting n — 0 and replacing u by # in (112), We obtain

= —gcos e+ pesine (along ). (116)

ﬂx=ﬂﬂSina+ﬂsGOSa’ Ny
with the aid of (116), (114), and (103),

Another lengthy computation,
brings us to the result
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& 1 a
(ot aman) et (gt gl )
= —~Dof9alV*% — (1 ~ ) (%z2 €082 & + 215, 8in « cOS @ +- tyy sin? o))
+ (1 — o)nifua,(sin® & — cos® @) + (2., — u,,) sin a cos altds
= —Do{nu[Vu — (1 — 6} (e + Kun)] + (1 —o)na(u,n — Ku)lds, (117)

where the final form is achieved through the transformations (113) with
7 set equal to zero. )
Still another aid to the transformation of the line integrals of {IOB) is
the integration by parts O\
N\S ©

f aoltsn — Ku,)ds = — [ 7 9 (ten — Kuds ) (118}
Pod o 08 a\ 3

The integrated term vanishes beeause € is a closed curw\r,\aml 1t is assumed
that each factor of [9(isn ~— Ku,)] is 1 single-valuqd continuons funetion
of position along €. (At a corner—point of (}stc\tmtinuous normal diree-
tion—of ¢ the required continuity of (U ~Ku,) involves special con-
sideration; in the case of the rectangular(plite with boundary edge free
{10-10(e) below) such consideration leads to a new boundary condition. )

With the results {115), (117), and {118}, in conjunction with (107,
we may write {(106) of (b) above ag "

IL (n [5‘% (V) + (1 —&g% (2 — Kua)J
\\
i :[r:n,.[(l — o) (e + Ku,) — Vgu]} dsdt = 0. (119)

The interpretatiort 0? this result becomes meaningful only on the basis of
discussion of th Various types of physical constraints which may be
imposed at ‘rl\ke;béunda,ry edge of the plate; this discussion follows directly:
{e) The }fnost important types of physical constraint which may be
imposed\along ¢ are (i} clamping, (i) simple support, (iii} complete
freelom’ :
(i} At a clamped edge not only is €' constrained fo remain in the equi-
librium (u = () plane, but, in addition, the normal derivative u, of the
transverse displacement is held to zero at the boundary. Thus the func-
tions u eligible for the extremization of (100) of (@) above must satisfy

! Although the subseript s of #, indieates partial (n held coustant) differentiation
with respect lo & the fact that n = 0 along € reduces partial differentiation with
respeet to s to ordinary differentiation in this eage,

* Bee also exercise 21 at the end of this chapter for & proof that (ten — Ku,) cannot

be diseontinuous along € even if the restrietion to continuity is not made a priert in
the free-edge probiem.
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w = us = O along €. 1t therefore follows that :
7 = 1, = 0 along C' (clamped edge). . {1207
(i) At u simply supported edge the only constraint is the holding of ¢
fixed in the cquilibrium plane; no condition is imposed upen the normal
derivative of the transverse digplacement. The functions « eligible for
the extremization of (100} must therefore satisfy « = 0 (with ., arbi-
trary) along C'; that is, _ _
7 = 0, 4, arbitrary along € (simply supported edge). (121)
(iti) At a free edge there are no physical constraints, so that the eligible
functions % are required to satisfy no special conditions. Thus wé have

both of . N O
1, 7 arbitrary along € (free edge). AN (122)

Because of (120) equation (119) reduces to a t-riviailnitQ&.in the case of

the clamped-edge plate (i). The boundary conditidns, therefore, are
those which are imposed from the outset_—liame]}\\:

w =0, u. = 0along C (clampf&d‘edge). (123}
With (121) taken into account {119) .‘d'iréét]y implies that the eoef-
ficient of 4, vanishes! along C. Toget}lﬁr with the condition imposed at
the outset Lthis result gives us for thesimply supported plate (ii)
w =0, (1 — o)t A Kus) —Vu=0 alongC. (124)
The second condition may {be\ simplified as follows: From the first two
identitics of (113), with n= 0, it follows that
Viy = u;,,;\“—i;“uw = Unn + e + Ku,  along C. (125)
But since w = (Zalong C, it follows that u, and therefore ., must
vanish on ¢/, \J# view of (125), (124) thus reads
¥ =0, SKou,+ um =0  along € (simply supported edge). (126)
O s :
Béeaw¥e of (122) the relation (119) implies the separate vanishing of
the refpective coefficients of 7 and 7. the case of the free boundary
edge (iii):

3 ., a . :
g VPu) + (1 = o) o2 (e — Kus) =0 V1ong € (free edge).  (127)

(1 — 0)(tes + Kttw) — V2 =0 )
deal with a i)ls;té' whose boundary conditions are

We may, of eourse, Yy ,
one of the three sets of conditions above may

mixed—whereby, that is,
1foe 3-1(0), _ -
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apply to. certain portions of ¢ while one or both of the other two sets
may apply to the remaining portions.

10-9. The Eigenvalue-Eigenfunction Problem for the Vibrating Plate

(@) As in the case of the vibrating-membrane problem (9-4(e)), the
first step in the solution of the vibrating-plate equation {107} of 10-8(p),
in conjunetion with any one of the sets of homogeneous boundary con.
ditiens (123), (126), or {127}, is to seek a solution of the form

u = ¢(z,y)g(l). (128)
Substituting (128) into (107}, we obtain, on division by Dedg, | \
Ve _wd AN
—f=_-£4 O
¢ Dﬂ q N ". ( 29)

Since the left-hand member of (129) is independent of £and the right-
hand member depends upon ¢ alone, it follows that tli'é,.\wo members are
equal to a constant, which—in view of the proof wn*(b) below that this
constant cannot be negative-—we denote by 8}/ We therefore conelude

that (129) implics two separate differential'equations,

Vi — Bl = O (130)
and N
¢ +a' = 0, (131)
where we write N
4 .
et = £2s, (132)
- u
The general solutiong E)f the time-dependent equation (131} is
N g = A cos wt -+ B sin wl, (133)

where 4 and Ba;} arbitrary constants.

Since the geteof boundary conditions (123), (126), and (127) of 10-8(e)
are all homogeneous, substitution of (128) involves cancellation of the
time dePerident factor ¢(¢f) and thus directly yields the three sets of
bouhdgry conditions for ¢(z,y):

. o
H ¢ =0 5;: = 0 along C (clamped edge),
. r a 2 .
(i) ¢ =0, Kq E;: + % = Qalong  (simp!y supported edge),

P d a 62¢ a¢
— (V2 — ) — — KY®l
(i) an (V2¢) + a o) as (as on K as) =0

(134)

along ('

1—a (%%‘23 + K g__i) C V% =0 (free edge).
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Inasmuch as the equations whieh must be satisfied by ¢—namely, (130)
and one set from among (134)—are homogeneous, we can without loss of
generality impose the convenient normalization condition

’[f $dzdy = 1. (135)

The problem of solving the fourth-order partial differentisl equation
(130 in conjunction with any cne (or combination) of the sets of bound-
ary eondifions (134) constitutes an eigenvalue-eigenfunction problem o
the type encountered in connection with the vibrating string, membrang,
and red. Any value of § for which there exists a function &, normélized
according to (135), which satisfies (130) and the single required,set of
houndary conditions from among (134) is an eigenvalue of.3; °$ is the
corresponding eigenfunction, There may, in some easqs;fexiét several
linearly independent eigenfunctions corresponding to a-gingle eigenvalue
of 8; that is, the eigenvalues of the vibrating plate ma¥ axhibit degeneracy.

According to (128), (133), and (132), it is clearghat each eigenfunction
¢ describes a mode of single-frequency vibratibn“which the given plate
(under given boundary conditions) is capable of exccuting. The fre-
quency {w/27) of cach mode is related $a the correspending eigenvalue
of B through (132). The degeneracy.6f*s given eigenvalue implics the
existence of more than one indepeiiﬂ’ent mode of vibrafion associated
with the given frequency. A

() We may characterize thé, sigenvalue-eigenfunction problem for the
vibrating plate as an isope{(imétric problem:

The extrema of

I =ﬂ‘“[\(aa¢)z — 21 — 0)(Purtbw — $u)IdT DY
~F

with respecfg~3:-}functi0ns & which are four-times differentiable in D, which
ss,tisfxst,hé’ hormalization condition

Y ﬂ sedndy =1 (136)

and which, in the case of the

(i) Clamped plate, satisfy ¢ = (99/dn) = 0 on G,

(i) Simply supported plate, satisfy ¢ = 0 on C, o 0
are supplied by the eigenfunctions of (130) taken In conjunction wit
the appropriate set of boundary conditions from among (13_4).

The proof of the above characterization is left for exercise 24 at the
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end of this chapter. . At.an early stage of this proof we achieve the result
f f ..[.@2‘#).{&2?1) ““ (1 -0 (Ifﬁxzﬂw + ¢>y;.,-r??-x;», - 2%;;‘!1::;) -~ honldr dy = 0,

° (137)

where ¢ is an extremizing function and # is arbitrary to within twice
differentiability and, in the case of the

(i) Clamped plate, g = (dn/9n) = 0 on C,
(ii) Simply supported plate, » = 0 on (*; Q)

the constant , originally introduced as a Lagrange undeter miafed multi-
plier, is at a later step in the proof shown to be identical wit (the param-
eter 8% which appears in (130}, That is, AN

~ gt \ (138)
Because of the arbitrary character of the fune\lon n we may setn = ¢
in (137) to obtain, after solving for 3, Lo

= [[ 1202 — 20 — YBran, — #3)drdy,  (139)
73 N

with the aid of {136}). The integr"'.:ajlid of (139) may be rewritien as

¢L 4 20antyy + 9%, + 2(1EN0)4E,
z&xt}_{_ g‘qﬁyu}z + (]_ _ 0.2)‘_‘6;.:.‘; -+ .2(1 _ O_)d’iy > 0,

gincet 0 <o < 4. It)therefore follows from (139) that A = 0 and,
through (138), Lhat\ fhe substitution of 8 for the commuon value of the
two members 01’\{129) In (¢} above is justified.

We mayalsd use the result (137} to establish the orthogonality of the
plate ﬂgen?hﬂ(}hﬁng I ¢% and ¢™ are eigenfunctions sssociated respec-
tively with a pair of distinct eigenvalues of §4—which, in accordance with
(1 ‘89, e denote by A; and M—we replace ¢ by ¢ and the 1efore A by

'(137), aloug with the substitution ¢ for the arbitraryi n. We
eﬁ”ect 4 second substitution of the same type iuto (137) by reversing the
indices § and & in the initial substitution. bubtmctmg the two special
cases of (137) so obtained, we achieve thv result

1 Bee 10-1(d), final paragraph,
1 1n those rases (clamped or simply supported plate) in which # is required to
samfy specinl conditions (3 = g, = 0, or y = 0) on ¢, the eigenfunetions $* and

¢ must satisly these samo conditions, so that the substifution n = ¢® or n = ¢
into (137) is iustified.
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& =N [f 9969 dray =0,
B

Since A; £ As, the integral must vanish, and the orthogonality follows.

In the case of degencracy—the existence of more than one linearly
independent eigenfunction corresponding fo a single eigenvalue of f—
the orthogonalization process delineated in 9-6{(c) is applicable. With
the result of the preceding paragraph, therefore, we conclude

ff pPeR dedy =0  (G£ k), _ N\
b

for the plate eigenfunctions ¢V, ¢3, | ., , ¥ | | a,ssoeiat»e:d\'ﬁ\ith
any one of the three types of boundary coadmons considered Here.

{c} The izoperimetric characterization of the v1bratmg>p1ate eigen-
value-eigenfunction problem may be sharpened into a mﬁ\mmum charac-
terization which reads as follows:

We arranee the totality of eigenvalues of g* asso\c}ated with the plate
problem, for any one of the three types of boun 1:}} situations considered
above (clamped, simply supported, or free ellgd), in the ascending order
BiEg s ... =8 = ... ;eachde enerdte eigenvalue appears con-

secutively in the list a number of times'equal to the number of inde-
pendent cigenfunetions assoelated W.lth it. The kih eigenvalue B is the

mintmum of the integral »

— [ (9021 — )b — Sy (140)
) L\

with respect o those fuiiét’iﬁéms & which satisfy the normatization condition

~0T [[eaa=1 (141)
\’§.. b

and the Us 1) orthogonality relations

\ [f P drdy =0 (m=12...,6— 1.),

where ¢ (m = 1,23, . . .) is the eigenfunction which satisfies

Tig™ — Bho®™ = 0

from among (134). Fur-
on of I must be, together
inuous everywhere in D;

and the appropriate set of boundary conditions
ther, the functions ¢ eligible for the minimizati
with their first partial derivatives ¢. and ¢y, cont
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the higher order partial derivatives may exhibit finite discontinuities at
an isolated number of points or across a finite number of smooth ares in P,

For the plate with boundary edge clamped the additional restrictions

= (8¢/3n) = 0 on € must be imposed on the eligible funclions; for the
plate whose edgo is simply supported the eligible functions are restrieted
to those which satisfy ¢ = 0 on . No special boundary resirictions are
imposed upon the eligible functions ¢ if the edge of the plate is completely
free.

The mintmum S5 of I wunder the staled resiriclions is achieved when

= ¢®, Q)

The proof of the above characterization of the plate eigeny. akut,s Tung
slong the lines of the correspondmrr proof of the minimumdelatacteri-
zation of the vibrating-membrane eigenvalues which appe: ars in 9-9(h).
Tt thus depends upon the validity of an expansion theefeny for the plate
eigenfunctions analogous to the expansion theoremd fm the membrane
eigenfunctions stated {without proof) in 9-6(d) \~BExplicit statement of
the required expansion theorem is found in exgreise 25 at the end of this
chapter; proof of the minimum characterizatidn of the plate eigenvalue-
eigenfunction problem is reserved for the Yamhe exereise.

(d) Tinally, it is possible to characperizé the eigenvalue-cigenfunction
problem for the vibrating plate in tetms of a maximum-minimum princi-
ple which corresponds to the maximil'm-minimum characterization of the
membrane eigenvalues demonsfrated in 9-11(a). Explicit statement of
the prineiple for the plate, t@gether with the proof, is reserved for exercise
26 at the end of this chagtei‘

10-10. The Rectangular Plate. Ritz Method of Approximation

As comparedsy \lth the suceess in solving the vibrating-membrane proeb-
lem in sewgtl ‘veizes, there are relatively few examples of the eigenvalue-
eigenfunct! "problem for the vibrating plate which have been solved
rigorougty.” The problem of the circular plate, considercd in end-chapter
exermsé 29, is the one case in which a complete solution has been achieved
foredch of the three types of boundary situations (clamped, simply sup-
ported, free) introduced in 10-8 shove. For the rectangular shape, how-
ever, only the problem of the simply supported plate hag been completely
solved. Partly responsible for the lack of solutions for the free- and
clamped-rectangular-plate problems is the easily verified fact that the

partial differential equation (130) of 10-9(a)—the equation satisfied by
the plate eigenfunctions—-is not separable! in rectangular coordinates.

In the absence of & method for obtaining a precise analytical solution,

! The meaning of separability in this sense is given in 9-8(a), second paragraph.
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W. Rits' was the first to employ the minimum property enunciated in
10-8{c) as an aid to approximating the eigenvalues and eigenfunctions
of the free-edge—rectanguiar-plate problem. (It is for this reason that
any method of eigenvalue-eigenfunction approximation based upon the
direct minimization of integrals—such as those employed in 7-6, 9-13,
11-5, as well as below in the present section—is generally termed a “Ritz
method.””)?  Beeause of the ready accessibility of Ritz’s monumental work
—but especially because of the almost overwhelming amount of detailed
computation involved—we limit ourselves to merely a few remarks con-
cerning the problem of the rectangular plate with boundary edge fage;
these are found in {e) helow. 'The main portion of this scetion is dg’?’q’ncd
to the Ritz method as applied to the square plate with boungdary €dge
clamped. AL

(a) By scltingu = 5 = ¢andf = ($zdyy — P in thestio of Green’s-
theorem results (105) of 10-8(h), we transform the hltegr@l‘(lél]) of 10-8{c}
as follows: ’

[ = ff (V2¢)? dz dy &
b PN 4
— (1= o) [ (9w — Gy F (baboy — Gubea)de]. (142)

Further, we employ the relat-iongj(i‘fié) and (113} of 10-8((:)—‘with the
function u replaced by ¢ and with n = 0 (along C)—together with (1 14)
of 10-8(d) to bring (142) inte.the form

X
= 2232 -y —g (s n (K by — Pentld
! ﬂ(v @) de dy 540 )fc[“’ (s + Kn) + talKbs — dun)lis

AN

o 0 ,
=ff(vg¢)’2\\d$\dy - (1 - 5") L I:Qf'n(‘ibss +K¢ﬂ) - ¢'&(K¢s - ‘f’w)] dS,

D S
o (143)

AN
the fnal Torm is reached through an integration by parts.? o
In the case of a clamped plate the functions ¢ eligible for the minimi-
zation of (140) of 10-9(c), which is the original form of (143), must Sé.l.tlsf}‘
® = ¢, = 0 on . Thus, in this case, the lin integral of (143) vanishes,
50 that the integral whose successive minima, in t‘he sense of 10-9{e), are
the eigenvalues of the clamped-plate problem is simply

! Annalen der Physik, Bd. 28, p. 737, 1909; or Gesamelte Werke Walther Ritz, 1. 265,

Paris, 1911.
? Buch o method is frequently called
# 8ee discussion direetly following (118) of 10-8(d),

“Rayleigh-Ritz method.”
with accompanying footnote.
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7= f (V2¢)? dz dy. (148
L

(b) The method we employ for the approximation of the successive
eigenvalues of a given clamped-plate problem is completcly analogous
to the method developed in 9-13 for approximating the elgenvalues of g
given membrane problem. “Thus we replace the elass of funetions ¢
eligible for the minimization of (144) by the subelass of funetions ¢ which
exhtibit the form

~
¥ =cod 4 ad+ -0+ oy, _\bi45)

where ®.1(x,y), $22,9), . . . , Blx,2) are s given functiong, f:({]nl'ir?llouslyf
differentiable in 225 ¢35, 5, . . . , ¢, are arbitrary constants coisistent with
the required normalization condition (141} of 10-9(¢c) with‘&ﬁ'tmphmed by ¢.
The functions &, ¢z, . . . , ¥, satisfy the clamped-plat¢ requirement of
vanishing, together with the normal derivative ofleagh, on the boundary
curve O, R

We denocte by ¢, ¥z, . . . , ¥, thefirst s -.f)p\roximate elgenfinctions
sought, and the corresponding approximatélelgenvalues {of the parameter
B8Y) by Ay, Ay, ..., A, In accordan?(; with (145) we write

A

bom D@y SN =02, (1)

i=1 “
8o that the problem of fin hg each minimizing ¢, is equivalent to that
of determining the set of values ef™, ™, ..., ¢f™ for the coeflicients
1, 1, . . ., G, Tespegbively, in (145), for each m. Sinece the functions ¢
eligible for the kth ginimization of (144) must be orthogonal in D to the
first (k — 1) approximate eigenfunctions ¥, ¥a, . . -, Y1, we have

because of (\4&} and (146},

ff“"bnd&dﬂ z Z 0y =0  (m=12 ...,k—1), (147

t=1jel

Wkkre we define
05 = gy = ff@"@; dz dy. (148)
T

Bubstitution of (145) for ¢ in the normalization condition (141) gives,
further, the requirement
Z G005 = 1. (149)

$mj je=)

18ee 7-6 (B).
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Finally, if we define

I'y =Ty = ffV2¢5V2EIJ¢da:dy, (150)
D

substitution of (145) into (144) gives

& 3
[ = 2 z el (151)
i=14§=1
for the quuntity whose suceessive minima we seek. ~

Comparison of the forcgoing paragraph with 9-13(e) reveals that the
problem of minimizing (151) with respect to the set of ¢1, e, . LN,
which satisfy the subsidiary conditions {147} and (149) is idegtié%,l with
the minimization of (196) of the earlier section under the‘restrictions
(192) and (194) of that section. For this reason we mndy repeat, in
essence, the paragraph of 9-13(a) which follows the equa}t}bns referred to:

The first s approximate eigenvalues Ai, A, . . . sy of the clamped-
plate problem arc given by the ¢ roots of the equ’ﬁhon in A

—I'n + Agyy —Taip + Ao~ - ':‘t;Tls + Ao
—I's + Agasy =Tz + Aoae N — Ty —!-Acrm —0. (152
e R Rt
The coefficients ¢, 6, . . . @™ x%hich—when % ranges over the values
1,2, ..., s—supply, through (146), the corrcsponding approximate

eigenfunctions ¥, ¥, . .\,\vh, are obtained by solving the system of s
linear homogeneous egpations
MX

I )
\2"\(:Ak9'£j — Tyyef? = 0 (G =12 ...,

i

2 &

n conjunetion with the normalization requirement

™\

%
\ 7 L3 3

i=1jml

B
ePeoy = 1,

for cach k. The constants o,; are computed by means of their definition

(148); the T; are computed from (150). ) o
As in the case of the approximate membrane elgenvalue's ob‘r:amed in
9-13(0), each approximate plate eigenvalue %s an .a,pprommatlon Jrom
above; that is, 85 < Ay, for all k. This fact is a dlrc:{':t consequence of
I eigenvalues stated,

the maximum-minimum characterization of the plate
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but not proved,'in 10-8(d). The larger we choose the valuc of 8, clearly,
the greater is the accuracy, in general, of cach approximate eigenvalye,

{¢c) We apply the method outlined in (b) above in order to HPPToXimate
the eigenvalues (of the parameter 84 associated with the clarmped square
plate of side &.  For the sake of simplicity of the computation involved
we confine our attention to the degree of approximation achieved by the
value s = 3. (In order to keep in focus the wider generality of the
method, however, we do not specify the value of s until lye very point
at which it is quite necessary to particularize to the value s — 3.

An almost obvious choice? for the set of functions cIn(:r._.?,r)€ B2(z,y),

-5 Po(z,y)—in linear terms of which we seek to express ghe Approxi-

mate eigenfunctions ¢, ¥s, . . ., ¥,—is the sot of pmglu:f?t-s of eigen-
funetions of the clamped-vibrating-bar problem: namelyyif w,(x) is the
qth of the orthonormal eigenfunctions for the clamprﬁ\id bar of length o
along the z direction—so that w,{y) is the rth such"e}gonf unetion for the
clamped bar of length ¢ along the ¥ direction—ive employ the produects
e(x)w,(y) in the following fashion: Ry NG

= w@n@), 0= wEud@ B = wu),

and, in general, \

;= w{x)w,(y) {4 :;}{q—l— r—=2)g+r—1)+4q|, (153)

where "

o

T=L% s A2 HVES T 1)
L\ g=1,2 ... 33&BF1+1 —r

(Thus we restrict the'ehoice of s to values for which (8s + 1} is the square
of an integer.) $M w,(x) and w,(x) both vanish for » = 0 and x = g,
and since w,(y{lﬁﬁd w,{y) both vanish? for ¥y = 0 and y = a, it follows
that the prodacts of the form (153) satisfy the required conditions of
vanishing\together with their normal derivatives, on the boundary* of
the square plate of side a.

e write p* for (v/BJDA, and w, for ¢, it is clear from (82} of
10-6c) that the orthonormal clamped-bar eigenfunctions w, satisfy the
differential equation

qE T Pe @=123, .., (t=zory, (154

! Bee, however, end-chapter excreise 26,

* Bee cud-chapter exercise 32 for still another choice.

* These propertics of w,(x) and u,(y) spring from the fact that they nre cigenfune-
tions of the clamped-bar problem (sec (72), line (iil}, of 10-6¢n1).

1 Bec the final sentence of the opening paragraph of () shove,
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together with the end-point conditions
() = wola) =0,  w,(0) = ' (a) = 0. (155)

The explicit form of w,(£) is given in (162) below.
In accordance with the parenthetic portion of {(153) we write

i=g3g+r -G+ -+, (156)
where ¢’ and r’ run through the same sets of values as do ¢ and r, respec-
tively. Thus, with (153), we obtain from (148) ' N\

N

@ a ¢
Oj; = 04 = L wq(x)wq,(x)dfcﬁ) WA ()Y = Begdr, (D)
'\

because of the orthonormality of the bar eigenfunetions. It j?u’;:t}iér fol-
lows, since ¢ = j if and only if both ¢ = ¢ and 7 = ', that/p\
AV

0y = G4 = 8,, \J (157)

Since it follows from (153) that o\

Vi, = (D y) + wo @),
we have from (150), with the aid of (156)\ <

=Ty [ 17 Bl ahionty)-+ o, @)+ el dy
= B L W) (x)w';,@&x + g fo o (gt (y)dy
T [ s [ wnli @y
+ [Dvdendi@ds [ ol w4y
:j\'“" = 8ppH g + OgaHew + Ligigkip + LiggLw, (158)
where we deﬁr}e\\u\
Hai= [ ol (@l ©dt, Lo = [ wnouliods; 159

S

A\ ¥ . - .
the Krouecker deltas appearing in the second line pf (108) arisc from the
orthonormality of the functions w,(£). If we twice integrate by parts
each of the integrals appearing in (159) we find, on using (155), that

_ [dw, Lo = f " wl(BuaBdE  (160)
Hmm’ = ﬁ *&—s;’wm (s)dE: 0

that is, Ly = Lowm Also, with the aid of (1564), we obtain

Hops = P f; W ()W (E)BE = P
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With the last two results {158) reads

Ty = Vi = Sepby(p; + p;) + 2L plkyy
= &y(p + p)) + 2L, Ly, (161)

since 7 = j if and only if both ¢ = ¢/ and » = +". It thus remaing ¢
evaluate the quantities L. defined in {159); for this we require an explicit
expression for w,(£),

The orthonormal clamped-bar eigenfunctions, which satisfy (154) and

{155), are given explicitly by! \
. O\
1 sin p, (E - g) sinh p, (E - g) [ N N
wq(§) = v e ek cus;‘@:?:r
AN _ a0
COs Py (E 2) cosh p, (S o 1 L oey
- - < | sint Zgr

+ 5

COS $P .0 cosh %Q‘.q

2\
forg =1,2,8, ... ;(ap,) is the gth positi%éroot of the transcendental
equation NV
tan® (yap) = tanh? (fap) (163}

or of the equivalent equation cosh Lop) = sce {ap).

For the purposes of the computation carried out below we require that
the quantities L. = L., be(Bvaluated only for m, m’ = 1,2, independ-
ently. These cases are fp,lﬂ’x\covered by the following resnlts:

Lo =0 if (m + ) odd, (164}
(g .?J{a:ﬁf;t % apm — pi cot? % AP (m even),
Lo = { VAN (165)
N\

A E) P tan ~21~ aPr — Bl tan? % apm {m odd},
the compitations of which are left for exercise 16 at the end of this
chapber. (Both (164) and (185) may be obtained direetly from (162)
and™(160) as follows: (164) results from the fact that ' (£w.(£) is an
odd function with respect to £ = g if (m 4- m'}) is odd. Direct inte-
gration yields (165) on use of the fact, which follows from (163), that
tan 3ap,, = (—1)™ taph FUPm.)

(@) At this point we specify the value § = 3; that is, 7 and 7 take on,
independently, the values 1,2, 3. By means of the parenthetic part of
{153) and (156) we establish the following tabulation of correspondences:

! 8Bee end-chapter excreise 15. This result may, of course, he verified hy direct
substitution intg {154) and (155).
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—_ =
L]

j:l:r=q=1; =2 r=29¢=1 j=8 r=
3

' ?

=l =g =1 i=2r=24¢=1 {i=3s=

-

ey
[

From (161}, with the aid of (164), we thus obtain
Ty = i + 2L3, Tge = (Pt + p3) + 2hulae = Ty,
Ty =1wn="Lu="Tn=2Lul =0, Ty = Ty = 213, = 0.

With these results taken in conjunction with {157) of {¢) above, the
determinanial equation (152) of (b) above (with s =3) assumes the
particularly simple form

(A = 2pi — LA — pt — pf — 2aLe)® = 0. (166)
The numerical values of (ap)) and (aps) are given [ O

iy = 47300408’ aps = TA8532046, "‘( ‘.;"

z? ~\ 7
to seven devimal places.  Use of these figures gives (wit-h"’s}mewhat less
aceuracy ), according to (165), O
AN
(1-21411 = —‘1231, a2ng = ?‘%’05

(A : 13{3 )(A ~D4§8) 0,
a W a

so that we nchieve the f ollowingﬁﬁproximations ta the three lowest eigen-
values (of the parameter ,8“)\6{ the clamped square plate:

Thus (166} beeomes

5438 oo .
W= ’l—i-?jr Ay = Az = Oﬁ . (167)
'\.“.

course, estimate the degree of
14 is beyond the scope of our
thod which has been developed®
alues for the clamped square

Without furthet analysis we cannot, of
accuracy of fthé\approximations (167).
study, Imfoqt:\i"nat.ely, to congider a me
for &plif;ﬁiihﬁa.t-ing from below the eigenv

plate. "¥his method gives the results
. 1295 L L4910 168
(= a MEhT g (168

'$oe Rayleigh, Vol. 1, pp. 277, 278 ‘
£ A Woinstein, ;’lfémo:vial- dos soiences muthématigues, vol. 88, “Titudes des spectres

des quations aux dérvivées partielles de 1z théoric des plaques élast;ques,;rc“i":lﬁ];ilzf;
Vilurs, Puriy, 1037. The fgures quoted in (168) are derived Boft FEFE T
Mémorial volume, in which he has given the results of computations foF

54, 56). '
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as approximations from below to the first three eigenvalues of g, From
(167) and (168) we therefore conclude

1205 1304 4910 5438
A S8 & =P E—

IIA

(169)

According to (132) of 10-9(a) we have o} = (Do/u}Bt (h =123, . .Y

where (w./2r) is the frequency of the plate’s kth natural moie of vibra-

~ tion, 4 is the mass per unit areg,

¥ and Dq 1s the flexural ri;i,'idity'\(‘de-

1?1 fined just following (97} Qf,\iQ—?(d)}.

Thus we have for an approxtnation

to the fundamental\fiequency of
the clamped squazdplate

7

L4

1”— b _E-‘ an A;"}j}?ﬁ /f)_n
25 @\
O — D"
2 accor;diir\lg to (167); according to
Jn the result (169) this approximation
Fie. 10-4, hﬁs an aceuracy of better than 0.4

oSPer cent.  Approximate computa-

tions of the second and third 1 atiral frequencies may he similarly comno-
puted from (167). A

(e) In aceord with the gp”eﬁing remarks of the present section {page

241) consideration of the'tgetangular vibrating plate with boundary edge

are satisfied by the digenfunctions of the problem. We note. first, that
the curvature Kpintroduced in (109) of 10-8(¢), is zero along the four
edges of the {a\zé: Further, if the rectangular domain 5 is given by
0z =005y =<', we have the following set of relations between
the coorgiij@étes ¢, ¥, and the #, s varigbles introduced in 10-8(c): If we
measuré 3he arc length s from the ongin—that is, if s =0 at 2 = 0,
¥ =8t is clear from Fig. 10-4 that '

along y = (, 8 = g, = —y;
along z = g s =a+4y, =2 — q (170)
along y = b, §=2a+b— g n=y— b '
along =0, s5=224 9 — #, o= —p

, With the aid of .(1-70), and K = 0, we apply the general i)t)ll]l(jﬁf)f. ¢on-
ditions (134,iti) of 10-%{a) to the rectangular plate;
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d 8 %¢ \
E Vi) + (1~ oz (6x 6y) =0
B¢
(]_ - O') w —_ V2¢ = 0

d B IEAY
a—z(vz‘ﬁ') + {1 -e @(axa-y) =0

32
(l—a)a?‘*:—v2¢=0

&longy = 0’ ¥ = b;

along z = 0, z = q.

Since ¥ip = ¢izx + &y, the second of the two pairs of bracketed equas
tions may be replaced by ¢y + 0¢ee = 0 and ¢.. + o¢yy = 0, Tespectively.

An additional boundary condition arises from the required comtinuity
of the mixed partial derivative ¢s., pointed out in 10-8(d) aboye)! + From
(170) we perceive that ¢, assumes the successive forms — ﬁb;g: byey — oy
¢y on the four sides of the rectangle as we traverse ¢ p@}ﬁterclockudse
from the origin. Since the order of partial differentigtion is immaterial,

we therefore conclude ¢,y = — ¢y, O AN
¢, = 0, at the four corngrs.”
EXERCISES |

L Let (z1,20,23) and (z),15,%;) be two neighbptﬁn's;r, points of an unstrained solid, in
the sense of 10-1(c); after strain the pointgiame located respectively ab i + s and
g Fu (6= 1,23, Use {7) to show thatithe change of the distance between the
points which resnlts from the strain isdidependent of the quantities w, ws, wy—pro-
vided we neglect squares and prody’cﬁs such 88 of, wiws, e12wy, ete.  (Thus wi, we, w2
a1¢ called components of r-omtz'on\(\HINT: The change involved is

R D 3
8 = \/Z‘[&r. +oug) ~ (@) U - E (e — 20
'y 1

1=

\Y !
but we may he‘r‘g{(pproximate [(a + we) — (a; +u)lf by

N (s — 2 + 2@ — ) (i — %)
4 ¢\’- $
2\ 3 :
From (7higfollows that Z (#: ~ 2i}(us — ;) is independent of wi, o, wa
i=1

% ey, of the strain tensor represents an

2. Us i lemen
se (7) to prove that a diagonal elem: o O off dingonal dlement

extension per nnit length in the @ direetion.

' The quantity (w,, — Ku.) is originally required
however, K = 0, and w.. differs from ¢, merely

upen the time ¢ alone, as in (128) of 10-9(a). . .
*A brief account of the controversial history of the boundary conditions appli

eable to the plate with free edge may be found in _Ray_high, Vol. I_s PpP- :62;5;7; It
18 inleresting to note that not even Rayleigh's derivation and statement {Vol. 1, pp.

352-857) of these conditions are eompletely correct.

to he continuous along T\ Here,
through & factor which dependa



250 CALCULUS OF VARIATIONS

e (f # k) reprosents a shear in the z;z; plane, whereby lines parallel respectively ¢
the ; and z; axes in the unstrained state are each rotated through an angle ¢, in oppo-
site senscs, so that in the strained state the angles between the lines are (4 + e,
Hixt: In cach proof, set equal to zero we, ws, ws and all strain elenenis, except for the
one on which attention is fooused.

3. () Employ the definitions (5) to verify the cquations of computibility {12 and

13).

( {!JJ) Bhow that (12} and (13) represent exactly six independent relutions for g
possible choices of 4,4,k, so that there are six equations of compatibility in all, {By
“oll possible choices ” iz meant the inclusion of combinations of 4, 5, & which violate
the parenthetic inequalities of (12) and (13).)

4. Prove the equality of the second and third members of {17).  Hrxe:“Qbnsider
the second member as the sum of two double sums and reverse the im{i?gss of sum-
mation in the second of these; nse the faet that (9W /aE,) = GLET I

B. Ubtain sn independent proof of the elementary relation (2) on the basis of the
results (32) and (33) derived—without the use of (2)—in 10-2(H ™

6. (2) Show that the component of bending moment {arisipg/from o given surface-
foree distribution) about the line =y = =, . = z; (a.rbitrary‘huz parallel to 2 axis, if
z, and 2, are arbitrary constants) is given, according toMhe¥definition (43), by

, : N
Ml :f[[ﬁ"u(fﬁe - 3‘.'2} — T;(Q’,—, :c_,)]dS,

JmnT: Translate the z, axiz so as to eoineideﬂ\;ith Iy = 2y @y = ¥

(b} Tse the result of part (z) to prove theassertion made in 10-4(b {6 1 he offect that
the surface-{force distribution (41) on T L gives rise to a bending moneent £, taken
about any axis parallel to the origing} iy axis; J is defined by (45). sy Use (38)
of 10-4(a). ~

{c} Bimilarly prove that themfﬂétriblltit)ll (42) on 23 = 0 gives rise to an equal, but
appesitely dirceted, momentedlohg any such axis, {It is thus shown that the bar of
10-4 is bent by equal and oppdsite co uples applicd at the two end faces, vy stated in the
text,) N
7. {a) From (49),(60), and (51) it follows that

9\ duy v
A& a Ca {171)

(In thig expr?ise €y, Uy Ca, by, by, by are used to denote arhitrary constants.) In the
manne;'\.of‘ achieving (49}, (50}, (51) use (47) and (48} to derive that -

<si“ _-a_ 1’1}1‘) - _a_f’ Fi] A . f_'} didq -0
a1 \ 9z, E dxe \dxe) Gy \dxe]

and therefore that

dur _ _ aP 72
dry TR Cs. o)

Derive, with the aid of (171, (172), and {483, that

P 7
U = — ? Tixs -p- (jgx;; — prs + 151. (1"3]
{b) Use {47) and (48) to derive
Qur Exa -~ (). (174

dxs B
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Fram (47) and (172) show also that

i) oP .
Frn =g -+ _ (175)

With the aid of (171), (175}, and (48) derive the rceult

o’
U

: P
= op @ = @) — o=y + Coan — Cuas + b, (176)

{e) From (171}, (174), and (47) derive

dua _ dug _ P
&4y N 02' s o Eza + 01’ A
28N -
and therefore, with the aid of (48), that PR
Uz = ;xgxa + 015".‘2 —_ szl + ba. ("}g (177}

() Substitule the solutions (173}, (176}, (177) back into the diﬁm}qﬁial equations
(47), (48) und so verify that the constants €, Cs, Oy, by, bs, by are motbally independent.

8. () Prove that the eross sections z; = constant of the bar'ef 10-4 remain plane
in the strained slate described in that section. Hinr: Use;e%%cr {47), (48), or the
results of exercise 7 to prove that (9%:/02}} = (#%ua/ aﬁi‘}} 0.

(5} For the same bar prove that any line z; = congtadt, »; = constant is strained
into a parabolic shape whose curvature is oppositelyidirécted from that of the strained
shape of a line 2, = constant, 2, = constant. {Hint; Use ecither (47), (48}, or the
resulte of exercise 7 to prove that (8%u,/azl) = {aP/E); complete by using part () and
comparing with (52). N\

$. Derive, for ithe bar of 10-4, the relgbion

\\gxg - EJ 1’

where M, s given by (44) andh/, is defined in (45). (This result, known as the Ber-
moulli-Euler eruation, is thesual starting point of the “gngineering theory " of the
hending of thin rods: ¥PWTE interpreted as the total hending moment cxerted b}’ the
porbion of the har %'{hé'righ t of {(x: larger) a given ross section uponbt-he‘pﬂrtion of
the bar which liegte he left of {x; smaller) the cross section. The ey b respert
to which 7, isw_;.’c; mputed (sce cxercise G(e)) passes through the ccntroid of the eross
section and @pirallel to the z; axis. Thus—unlike the easc of the bar of 10-4-—3f,
may be “f'm’.lfzt.ion of 2.}
y 10. Statand prove the extension to the basic lemma
Hon of (65} and (66) of 10-5(b). ; if, i

11. Derive the dii—‘ferential e)quation of motion for the vibrating rod of 10-5 if, in
aidition to (56), we take into account the kinetic-encrgy torm

L,
3pd) ﬁ] g dz

. . . i ments;
Which nrises from the rokational motion of the various crogs-sectiona} volume elements;
bere 5 is the mags per unit volume of the red. ANSWER:

of 3-1 required for the deriva-

au RET 3t
ar e — pf——. T 0.
E.hax* + Tc’h‘-z 2 Vart agt



252 CALCULUS OF VARIATIONS

12. Derive the equation of motien for the vibrating rod (neglecting the rotstions]
kinetic energy introduced in exercise 11) for the case in which hoth (£/:) and « are
funétions of 2, (Assume the validity of (58).) ANBWER:

9 oty o
6—2:,_,(51;'15;) +r 2% =0,

i3. (a) Prove that ¢ = M(z} + N(x) is the solution of (76), with p* written for
(v\/BJ:), where

‘?if - pM =0, %Eg + N =0 “\(178)
and, further (if p < 0), < O
Mz%(:ﬁqtp%%:—f), N=%(¢—§,% (179)
Thus derive the general solution of (76): "\\ ‘
¢ = 4 cosh pz + B sinh pz + € cos px %D sin pz, (180}
where A, B, C, D are arbitrary constants, < :’\

(b) Provethat, if M(0) = M(L) = 0, then Myt vanish identieally in0 £ z £ L,
Thus use (179) and the second of (178) to prove that the eigenfunctions of the hinged
vibrating bar are identical with those of W8 wniform vibrating string whose ends are
fixed (see exercise 9(a), Chap. 7). HmytFor the hinged bar, M(0) = M{L) = 0,50
that ¢ = N. N

Bhow, however, that the ratios of successive vibration frequencies of the hinged har
are different from the correspgn(l‘mg ratios for the string of coual length.

‘(e) Bolve (76} with » = 0 and)show that no such solution is an eigenfunction execpt

in each of the two cases \\

@) ¢"(0) = ¢"'0) =\¢"(L) = ¢"'(L) =0  (both ends free),
) ") = dMONZ p(L) = ¢"”(L) =0 {one end free, the other hinged).

Show that cas'e\’(;:)\violatcs the general rule (exercize 14 below} of no more than one
linearly indﬁ;@udent. eigenfunction per bar eigenvalue. Use the Schmidb process of
9-6{c) to ghtain & pair of orthonormal eigenfunctions corresponding to the cigenvalue
Xo= 0’331:‘ the bar free at both cnds.  Answsr {not unigue):
<\: - ¢ =L4 ¢ = 2/FLUGL — g).

The cigenvaluc A = 0 ig of no interest in the study of vibration.

14, ({.;) Fill in the details of the proaf of the following theorem;:

If p is an eigenvalue af the differentiol equation

d4
with the end-point condstions
0} = ¢'(0) = (L) = ¢'(L) =0, (182)

3(};‘;25)83*‘353 onty one linearly independent eigenfunction o(z) satisfying both (181) and
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Suppose that there are two linearly independent functions ¢,{z) and - hich
satisfy (181) and (182). Consider also ' ) ) whic
¥1(z) = sinh pz,  yal2) = sin pe,

which satisfy the differentinl equation (181) but n_of all of'(l'gg), We notice

v1(0) = ¢2(0) = 0. . - (183)
We have that there exist constants Ay, 4., By, By, not all zero, such that
Az} + Awdo{z) + Bpa(@) + Bafs{a) = 0, 1840,
identically; for the wronskian (see 2-8(e)) .
A\
¢} ¢§ !&} if*,z e\ N
W o= ¢}: ¢_?, ‘&;I.r ]p.rg.- .’::’ .
d’}u ?n' 1;’};! .“r!n k ".‘ 3
L2 s ¥ ¥ m'\§ ;

may be shown to vunish identically. (Form the derivative (dw/d#) by using the mile
{2-8(d)} for dificrentiating a determinant, and use the fact {h&t each of ¢, ¢, ¥, ¢
satisfies (181): (wr/dx} = 0, so that w = constant. Bui/z,%= 0 at 1 = 0 hecause of
(183) and (182} as satisfied by ¢; and $2.) N

Bince (184) holds identically, we have, because by a.f;el }bglsatisfy (182},

B (0) + Bwij(0) = 0,  Buggll) + BaliL) = 0.

But this implies, it is casily shown, eitherl:ii"s pL = cosh pl—an impossibility for
p#Z0(why?) —or N\ S
Bl“ = Bz =0 .

Thus, from (184), there exist Ay aﬁaga, not both zero, such that
N }1@1(5) + Ai‘ﬁﬂ(x) = 0:

identically; that is, ¢, auﬂi.d;; are not linearly independent. . )
(h) Prove the thearem eorresponding to that of part (@) for the eigenfunctions of
(181} with each of shelfollowing sets of end-point conditions:

@ L0 = 0 = T = D) =0 B AO)
{it} SN (0) = g"(0) =¢L) =9¢"d) =0
@) (N 87(0) = ¢ = ) =9"(T) =0

i) \ Ty =970 =el) =4'(L) =0
v} $7(0) = ¢(0) = $L) =) =0
Hrvr: For (ii) use the result of exercise 13(h) together with %he_theorem proved in
exercise 8, Chapter 7. For (iv) use yn = sinh p(L — 2), ¢» = sl pl: — 7). N
16. (@) Determine explicitly, to within a multiplicative factor, the eigenfunctions
for the vibrating bar clamped at z = Qand z = L. ] HINT: Use (180) of exercise 13 to
obtain the solution of (181} with the end-point conditions (182).
Shew that, )
¢ = A(cosh pz — cos pz) + Blsinh pz — sin pz),
where ) _ o . -
A _ sinh pL —sin pl _ cosh pL — cos pL, (185)
~F = cosh pL — cos pL  sinb pL +sin pL
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1.0

0.5

pL
A — ] \
LS Ar Sx
z 2 2 2\
Each value of pL at which the two curves
intersect is a solution of {186). A
Fic. 10-5. ~ N’
1 .’ N
Lo :& , tanh = pL | ’ N
= 7
3 I\
) .
0.5 tangpL N\
) xt&',
¢ x\ g
—1 —zpL)
am f s
) 4
O ~tanh %oz, |
. (PEach value of 1oL at which an intersection
.\: ., oceurs is a golution of (187).
& Fia. 10-6.
whenece '\\“
N \ eosh pL = sec pL,  or  sech pL = cos pL. (186)
AN )
Show that (186) is equivalent to
tanh? (3pL) = tun® (1pL). (187)

(b} From the graphical solution of { 186), Fig. 10-5, ascertain the following relation
involving (pL}, the gth positive solution of { 186}:

Pl = (2¢ + Dir — (=1)0ey (g =123, ...), (188}
where
D<ar<im, o1 >as>as>. . . lim @, =0.
— =

Thus show, with the aid of (187) and jts graphical solution, Fig. 10-6, that
tanh (bpal) = (~1) tan (3p,L). (159
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(¢) Show, with the aid of (186}, that (185) reads, with p = p,,

fsin pL|
A _ ces pL sin pL
B sin pl
_ { - tan 4pL (g = 24,6, . . ., whence sin pI; > (),
cot ipl (g = 1,3,5, . . ., whence sin pLk < 0},

a8 we find with the aid of (188). Thus show, with p = p,,

{cosh pz — cos pz) 8in % — (ginh pz — sin px) cos p;‘ O
de = O, r o AL80)
{eosh pz — cos px) cos.p—z- -+ {(ginh pz — sin px) sin %é f\~>
‘S

’\l

where C, is constant: The upper form is taken if g1s even, the lower 1f gis‘odd
With the aid of (189) bring (190} into the form

. m\
| sin plz —3L) _ sinhplz —4L) g
i - sin 3pL sinh }pL \, s (191}
) $e = Ly cos ple — 3l cosh p(e —- BL‘) (g odd)
‘ cos 1pL cosh 3L\
‘ with C; constant and p = p,. ol &
! {d) Bhow that R N

&N

_ AN (162)
‘ NG ,\/E

supplics the normalization cundltmu\

f ol dz = 1.
<"

(e} Obtain (191),, d‘égether with (189), b indlic by considering the bar Whlﬁhlls
damped st # = 4k and ¢ = 3L, Fuvr: Use (180), with ¢ = ¢’ =0atz = —3
and z = £L; ‘rhﬁxb‘hzﬁ: the origin of @.

16, Evaluatc\f 1¢ integral

NN L
\*\w Ly = j; bq 97 43,

= - here
Whﬁl'e By is glven by (191) and ¢, by (192). Hmw: erte de = e = % T
u = _'pqum = 'pq?"m and ﬂq(o) = ?Jq(O), uq(L) = U‘J(L)’u (0) =% (G]’ * (L) - U @
hecause of (182J Use the differential equations to show that

L
Lﬂﬂ' = - % f (uq + Uﬂ)(ui"' - !}f)dz

and, for example,

i ’ i
L L {ugtty — uq(uﬂlﬂ te (g # ).
- dg = ——— 5 U
j; gty AT ](; vty pi’ ]
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ANSWER; : : : I e
o (v 4- ¢’ odd),
8pgpl (py cot §pyL —~ p, cot dp,L)
Lw’ = Lu’q = L(p;' - ?J;J
8pepi(pe tan Il — py tan ip.L)
Lipy — p%

I@."}’ tven),
(24" 0dd),

(E) Pe cob 51 Pl — p? cot2 % Pels {g vven),
Laa = 2 1 1
2
- (—) Petan - p L — p? tan® = p.L {g odd).
I 2 2 O\
¢\

17. (a} Show that the surface-foree distributions (89} on the sil\rfaces T3 = Ly,
&z = 0 of the plate of 10-7 give rise to equal and opposite bending‘,lj}omcnt-s of magni-
tude $P:004% shout the g; axis, IinT: Use the definitions (43 )of\10:4 (B},

{b) Show that the bending moments of part (2), as well & those whick arise from
the distributions B onax =1L, 2, = 0, are indeed coupits’ Hiwy: See exercise §
above,

18. Use (20) in conjuncéion with the definitions (:5K\ef 10-1{e} to derive the resnits
(91), (92), and (93} of 10-7(¢). Hinr: Procced’ixkﬁhe manner of attaining (52) of
10-4(c) from (47) and (48), O
19. Btate and prove the exteusion of the basic lemma. of 3-1 required for the deriva-
tions of (107) of 10-8(3) and the bounda-ryégndit-iona (126) and ¢ 127) from {11%) of
10-8(d). s\

20. Prove that the jacobian (1 + &) given in (111) of 10-8(c) is positive if the
point (n,s} is not separated from C'by ‘the evolyte {(locus of centers of enrvature) of
C. (It is required to investigatefhe geometric fuctors which determing the sign of K,
defined in {109).) Show that (ANS nK) = 0if (n,s) lies on the evolute, '

2L. (a) Buppose that t} eQAntity (u, — Ku,) is allowed a jump discontinnity of
magnitude 5 at a single pgi}b of C.  Bhow, by making the sppropriate change in (118)
of 10-8(d}, that a term_ Ll ~ o)nas is introduced into the time integral (hut exterior
to the integra] along\ 0y of (119); that ig, (119) reads

{x NG
j;»l\‘{\i (I — o)yes + fc {integrand una]tered]ds:’ dt =g, {183}

whore 5, is‘a'n\arbltraxy constant in the free-edge problem and zero in the elamped and
simply gupported cases.

Showthat. (193) implies, in the free-edge case, that § = g,

51 Extend the Argument of part (a) to cover the case in which (w,, — Ku,) I8
aliowed an arbitrary finite number of jump discontinuities along ¢; that is, show that
(#en ~ Ku,) must he continuous along C in the fres-edpe case,

The validity of {118} is thus proved without g prigr; assumption of the contipuity
of (u,, — ), for in the two cases not covered-—clamped and simply supported
edges—we have 5 — g {and therefore py = 0) along €. (Tacit in the above proof is
the assumption that (#sn ~ Ku,) approaches 2 finite limit as any point of (' i
approached along ¢ from 8 given direction—that no discontinuities other than jump
discontinuities are allowed, that i, Buch other discontinuities are ruled out from
the starf, however, by the physical nature of the problem.}

22. Write down the boundary conditiops {134) as they read in the following specisl
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{a} Cireular plate (r = a) clamped. Answer: ¢ = 0, (36/01) =Oatr =a

(b) Rectengular plate (0 S ¢ <¢; 0 <y <b) simply supported. Answes:
4 =D, (%¢/oz) = Oonz = OQandz =a; ¢ = 0, (8%/3y") = Oony = Oand 4 = b,
Note also that (0%¢/dy?) =0on z =0,z = a;and (%/02%) = Oony =0,y = b.
Why? . : . N
(¢) Semicirenlar plate {r =a; 0 = @ = «) simply supported, AnswER: Sinee
K =(l/a}onr = a,
e

- cde | ¢ _ -
o =0, &arwf—arg-—l)onr—a(ﬁgﬁgw),
1 9%
¢ =0, r—za—ei'=00nﬁ=0,ﬂ='ﬁ‘.
(@) Cireular plate (v £ ) free. ANSWER: O\

10 ¢a%¢ 1ag) _ S

o
P S G b Il Gy i

_ 1d%  laey ... _
(1 =) (aﬂ 3 Taz ) Ve=0 R
1af 8 1 9%
ity — = 9 f 0% 1% -2{e}.
whore Tig e (r ar) 1 558 19-2{e)]

~ . .
28, (Compare exercise 13.)  (¢) Prove that ¢ = M (x,{) 3> N(z,4) is the solution

of (130, where N\
vl — @M =0, VN +§N=0;

and, further, if 8 = 0, that ™

73

{) Prove thai, if M = 0 everywhéfe bn the boundary C, it follows that M =10
identically in . TItxt: Use Greenfs formula (23) of 2-13.

() Show that, if we deal with &aimply supported rectangular plate, we have M =0
on the boundary and, therefor@ye = N in D. HinT: See exercige 22(b).

Thus show that the eigefifunctions for the rectangular simply supported plate are
identical with those asspéiated with the uniform vibrating membrane of the same size
and shape (sce (108)~Q‘f;: .8, with ¢ = o0 and 8% = (/7)) T i

{4} Compure the‘relationship between the various natural vihration frequencies
of the hinged reqt@ﬁ}gular plate and those of the corresponding rectangular membrane,
Hive: Use (133)%! 10-0(a), (57) of 9-4(a), and (118) of 9-8(8). < b

4. Usethe)*cp process”—essentially the same as that whichis e]?lp]‘nmd e 10—{8 ih),
bit witi\t’f}e "intcgml over ¢ suppressed—to prove the iSOI?eI'DI]BtIlC character tl; : &
Plate eigenvalue-cigenfunction problem, as enunciated in 10:-6(). In partiadier
derive (137) of that section. . . .

2. (a) We assume the validity of the foliowing expansion theorer: L.Bttﬁl:;ﬁ:h M

.+, ¢ | be the totality of the orthonormal (_elgenfunctlpns assom_ Lofined
given vibrating-plate problem. Let g{z,y) be an arbitrary .boul-l-d ed f-m}l '3: number
in the plate domain D; g(z,y) is such that D may be divided nto ;‘ lln%t first and
of subdomains by a finite set of smooth ares such that g, m‘gether N ifa \ :vrite
second partial derivatives, is continuous in each gubdomain. Then if we

1
A =-2(¢.+

{2
’

e

glz,y) = Z Cmd{™ {z,y) | (™ -=ff¢"“’gdxdy),
b

me=1

(194)
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the series converges uniformly to g(z,5) in every subdemain of 7 jn which g(z.3) is
confinuous. Further, in every subdomain of D in which a given partial derivative
(first or second order) of ¢ is continuous we may form that derivative by term-hy-tern
differentiation of the series (194): the differentiated series converges uniformly in the
subdomain to the corresponding derivative of .

() Use the orthonormality of the cigenfunstions o™ to derive the parenthetic
formula for ¢. in (184). {Assume, of course, the validity of the serics CxPangion ip
194),
( (e )Usé the expansion theorem of part (2) above to establish the following CXpres-
sion for the gencral solution of the equation of motion {107y of 10-8(h) for the vih{ating
plate (if 82 = 0is not an eigenvalue):

= - — O\
DU 3 + Du 5 L e \".
ufz,at) = E A cos \/T Bit + B, ein \/T @t d,lm.g?}y), (195)
m=1 ‘.:ﬁ‘

N
where ¢ iz the mth cigenfunction of the corresponding eigehwalne-cipenfunction
problem. Timvr: Use the method of 9-7(a) by substituting .\ "

w(z,y,t) = Z c,,.(i)q;tm)(;‘;,:@f {196)
wm=] “\ W

into the hamiltonian integral (100} of 10-8(a);:p1{(yc:3ed to extremize wilh respoct te
the functions ¢.{f). A tremendous simp]iﬁ,cation is eoffected by first using the
transformation

1 N @ ...
_[f (testtyy — wf)da dy = 3 fctuu(’um + Ku,) — ey (K, — u_\,,):|d.s,
D ..

which is derived in the mannegip\which { 143} of 10-10(a) is aehioved, Ttis readily
seen that the part of the h n@tdnia.n integral embodied in the line integral around
¢ vanishes on substitution &(196) when we take into secount the houndary condi-
tions satisfied on ¢ by the.gv (z,y),

Mow must (195) hawmiodified if 8¢ = 0 iz an eigenvalue?

() Use the expfmgioh theorem of part (a) above 1o establish the minimum charae-
terization of thewibrating-plate eigenvalues enunciaicd in 10-9{¢c). ThixT: Sce the
proof of the Eu-esponding theorem for the membranc eigenvalues in 0-0(h), Sim-
plicity is greatly served by employing the form (143) of 10-10(e) for the int cgral (140)
of 10-9(eha

Tarlfs’:f especiul note of the point in the proof at which it. is essential to require con-
tinuity/everywhere in [ of the first partial derivatives of the functions # eligible for
each minimization,

26. State and prove a maximum-minimum characterization of the cigenvaluc-
eigenfunction problem for a vibrating plate, This characterization hoars the same
relutionship to the simple minimum characterization of 10-9¢e) as does the maxipm-
minimum characterization of the membranc eigenvalues (9-11) to their minimum
characterization 9-9).

27. () In the membranc problem the functions eligible for the minimization of the
integral T (given by (123) of 9-8(a)) need not have first partial derivatives which are
continuous everywherein . T or the vibrating-plate problem, on the other hand, only
functions whose first partial derivatives are continnous everiwhere in 1) are cligible
for the minimization of 7 (given by (140) of 10-9(e)). To what physical difference
between a plate and 2 membrane does this fact correspond ?
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(b} It has never heen proved that the eigenfunction corresponding to the lowest
gigenvalue of the elamped-plate problem for arbitrary domain I hag no nodal Eneg
P, Any attenipt at a proof along the lines of the one given in exereise 21(¢), Chap. 9
(for the corres pondding theorem concerning the first eigenfunction of the general fixed-
edge-membrane prablem), breaks down because of the required continuity everywhere
in Dof ¢y and ¢, for the functions ¢ eligible for the minimization in the plate problem.
Demonstrate thu oceurrenee of this breakdown.

28, By the direet substitution ¢ = X(2)¥(y) show that the cguation (130) of
10-9(a) for the plate eigenfunetions is not separable (in the sense of the second pars.-
graph, 8-8(a}} (v rectungular coordinates.

29, We cons=icler, in this exercise, o eireular plate of radius ¢; we employ the pola
eoprdinates (r,#) with origin at the center of the circle, so that + = g is the equatidn
of the plate houndary. A

(2} With the aid of exrcise 23(a) and the identity (43) of 9-2(¢) show.$hat/the
solution of ¥1¢ — 'y = 0 which is independent of 8 ig given by « \,

$(r) = HY() + H-(), SN o
where HT and [f - satisfy the differential cquations »"\'\
d { dH* '
LR S RIREN -
e (r e ) + A% 0’,’\\:

where upper signs (or lower signs} of the ambiguities (i}} arc taken together.
{#) We impose the requirement that ¢ be boqncled for r £ a—in particular, for
r=0. Bhow, with the aid of 8-3(c), that (197} betomes

o0} = AJalBr) + B.Idfﬁrj @ = —1), (198}

where 4 and 7! ore arbitrary consta.nts.ﬁ,r}'d Jofz) is the sere-order Bessel function of
the first kind. Ve

() Show thut J4{(/8r) is a real fifndtion since § and r sre real. HINT: Use (42) of
8-3(c). (\J
Juliz) is generally denotad E'\,i"f J(z)—where I, is the so-called modified nth order
Bessel Tunction of the firsp kintl. Thus we may rewrite (198) ag

) :".\ ¢ ¢lr) = AJdo(fr) + B o(Br). (199)
Use (182) of 8-7((@«{@.[}1‘0\-’0 that
N e = —n, L@ =10, 00)

where the.E;iﬁuc ¢’} indicates differentiation with respect to the argument of the
functipn, ffurbl\-'m] .
(d)\ﬁhéw thut, if (199) is an eigenfunction of the circular-elamped-plate problem,
Wwe must have
4 _ 5I(Ba) - _ b_(ﬁ_a}_‘ (201)
BT TuBa) | JlBa)

HiNT: Use exercise 22 (@) together with (200).

The final equation {equality of the second and
ininfinite unhounded set of positive valuesof Sa.
fi_il‘ the cireularly symmetric (independent of 8) mo
clreular plate.t

third members) has for solutions
Thege supply the list of eigenvalues
des of vibration of the clamped

soe Philip M, Morse,

' For numeriea! results involved in the eircular-plate problen, Ine., New York,

i‘ Vibration and Sound,” 2d ed., p. 210, McGraw-Hill Book Company,
048
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(2} Write down the equations which ¢orrespond to (201) 1f (199) isan elgenfunetioy
of (i} the circular-simply-supported-plate problem and (ii) the circulzaur-free.plate
probiem. )

20. We subject a clamped plate to a nonconservative transverse foree per unit
aren given by the expression F(z,y,t}. (That is, an element of arca de dy experiences
the externally applied force F(z,y,t}dx dy perpendicular to the zy plane,)

(a) Use the extended Hamilton’s prineiple of 6-7 to show that the equation of
motion of the plate so influenced is

aty
B3n DoV = Flayt). (202)
Q.
() Extend the mothod of 9-7 to show that the solution of J202), with
% = (du/on) = 0on (), is 2 AN
L] 7"\ N
u = Z enit) ™ (2,), A
mwi ~,‘ }
where RS /
Tigplm) ,g:nqﬁ(mJ = 1in D, Glm = %] = 0on €,
and ,1\\:

d R G
K ?2:? + 84 Dot = 'U‘F(?ryh‘b‘““ dz dy.
D : oo }

(Each ¢(™ ig normalized in D.) N
(e} If the applied transverse-foree c!eligit‘y is Fz,y)—independent of f, that is—
show that the equation of equilibrium foi*the clamped plate is given hy

) . du
DTy = FF{’K} in b, with & = el Oon C.
)

Huew: Apply to (202) the dendition of equilibrium—namely, that x is independent of
the tirne ¢, A

{d) Make the‘requi\’fed' modifications of statement in parts (a), (b), {¢) if a simply
supported plate is substituted for the glamped plate.
81. Prove thef assertion made in 10-10(h), final paragraph, that g £ 4, HiNt:

Use exercis%ﬁa ove 16 develop the same sort of argument as that given in the final
paragraph iN\G=13(a).

32. (@)Apply the method developed in 10-10(b} for approximating the eigenvalues
of !;I%a Bgilare-clamped-plate problem, with s = 2, using

Y ey
a 2 I 7}
OO (-
@ a 2 a
ANSWER: A, = (1296/aY), 4, = (5793 /a4).
(b) Inplace of the functions em ployed in part {g) use, withs = I

P, = gin? (E) sin? (g)
i a

1

ANSWER: A, = (1385 /a4),



CHAPTER 11
QUANTUM MECHANICS

Of the tremendous body of theory known as quentum (or wave)
mechanics, we consider in the present chapter a narrow segment impinged{
apon by the idzas and methods of the caleulus of variations as developed
in the preccding sections of this work. Roughly speaking, quahtupi
mechanies may be described as the mathematical theory develdp:ed in
the years following 1925 which has had success in deseribing(sﬁ'(fburatel_y
the great bulk of extranuclear atomic phenomena. Thegégdeptions to
this success the phenomena mnot correctly describedby' the present
development, of gquantum mechanies—although notghle in importance,
are fow in number. 4D

Historically, the role played in the origins”t} quantum-mechanical
theory by the calculus of variations is signzil;"The Sehrodinger differ-
ential equation, a cornerstone of the theory, was discovered and first
applied by the man whose name it bedrs as the resuit of a problem he
posed calling for the extremization of an integral with respect to an
wknown inlegrand function. While Schridinger’s proposal of the prob-
lem was purely arbitrary in it fack of motivation grounded in physieal
considerations, it found g ;En}t.;m'ori justification through ite immediate
Buceess, with suitable int.efpreta,tion, in describing the radiation spectrum
of the hydrogen atomn<Soon after the first discovery of his equation,
however, and again/ ﬁ&;i'th the aid of the ealeulus of variations, Schrﬁd_ing{_ar
was able to proﬁa’é’insight into the physical basis of the new atomic
mechanics and'so'derive “his”’ equation anew with some degree of @ prior:
physica! justification.

Tu i “Present. form the science of quantum mech:
set of siMply stated postulates leading to results wh
Important, Schrodinger equation merely as a special cas
the fact that. this equation is derivable from a variationa 03
available the calculus of variations as a valuable tool for the approm_p_'-\ai}e
solution of many atomic problems. The present chapter treats-zx\'__fg“’
such problems in addition to offering an exposition of the essende of
Schridinger’s early wotk.

In all that follows we avoid consideration of Te
mentary theory which take into account refativistic e

261

anics is based upon a
ich include the all-
e. Nevertheless,
1 problem makes

fnements to the ele-
fiects and the influ-
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ence of “spin”’ (the intrinsic angular momentum of the fundamenty
particles of matter).

11-1. First Derivation of the Schrédinger Equation for a Single Particle

(@) In his initial paper’ Schridinger considers the reduced Hamilton-
Jacobi equation {6-5(c)} associated with a single particle of muss m moving
under the influence of an arbitrary force field described by the potential
energy V(z,y,2}; the instantaneous position of the particle is denoted by
the cartesian coordinates (z,y,2). According to (38) of 6-53(¢), this equa-
tion reads \

*y 2 oy 2 S* 2 o’\:'\
() + () + () ]+ vewn - 250 )

where E is the constant total energy of the part-icle.g* Vith the change
of dependent variable S* = K log y—with K a c@'ﬁg}tant open for experi-

mental determination’—(1) becomes, on multi\pjication by 42,

v

X'\
K[ g\ | (aeN | (o]
B[ @) (T -meo

Ignoring the problem of solving (é), Behridinger instead considers the
velume integral* of the left-hand ' member carried out over ull space:

- I, 28 ()] - oo

Ie then poses the qqé}ion: What differential equation must the fune-

tion ¢ satisfy if I\*,: given by (3), is to be an extrernum with respect to

twice-differentidble funections ¥ which vanish at infinity in such fashion

that 7* existg % The answer to this question lies in the result of 9-1():
We su\b@tute the integrands '

N
&

K
~O F=gn Wit +40 + (V- Ene

! There is available an English translation of the set of Schridinger’s first papers
published under the title “Collected Papers on Wave Mechanies,” Blackie & Son,
Ltd., Glasgow, 1928,

: Th? significance of the dependent varighle 8% of no inimediate importance at
this point, iz given in -5,

'8 The reader familiar with quantum theory should soon recognize the identity of .4
with the well-known (h f2x),

+In this ch&Dt_er we uniformly omit explicit indication of the limits of integration
Whene\fer a mulplple integral is carried out over all space. .

£ As in preceding chapters, we employ subscripts to indieate partial differentiation.
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of (3) into the Luler-Lagrange equation (9) of 9-1(b), with w replaced
pyy. We thus ohtain

P
(=]

2 _w’xx + b+ ¥u) + (V- B =0,

or, in abbrevinted notation,

K2
2m

+

vy + (B — V) =0, @

as the differential equation-—the so-called Schridinger equation f6ryd
gingle particle—which must be satisfied in order that ¥ render((8) &n
extremum. A N

() For a given potential-energy function ¥, solutions of'the Schro-
dinger equation (1) which vanish sufficiently rapidly at-infinity (for the
existence of (3)) exist, in general, for only a privﬂeged:discrete set of
values of I¢; that is to say, the solution of (4) pnder the “boundary”’
pondition that (3) exist is an eigenvalue—eigenﬁuﬁcﬁon problem in which
the eigenvalucs of & are to be determined. ’Schrodinger's early assump-
tion—that, namcly, the eigenvalues of En (4) are the physically realiz-
able values of the total energy of a particle under the influence of the
potential encrgy V—is mainta-inedjjn’.ﬁhe theory as it stands today.

On the other hand the physical“intérpretation of the Schrédinger eigen-
functions ¢—the so-called wave\functions—was nob uniquely assigned in
the first days of quantum m%éhanics; the interpretation which has even-
tually become accepted dipiversally is elucidated in 11-3(c) below.

The fact that E dahbot in general be assigned arbitrarily provides an
equivalent, but m()\:e aseful, extremum problem which leads directly to
(4}, as Schrt’adi{%@f'points out in an addendum to his first paper: If we

extrernize thelihtegral

g

\H‘.\I:f[f [{_f_a (¢§+W§+¢§)+V’P2]d$dydz ()

2m
with respect to functions y which satisfy the normalization

(1) $* dz dy de = 1, ©

we are led, according to 9-1(c), direetly to (4), provided we denote bg E
the undetermined Lagrange multiplier of the problem. Thus the Se ird-
dinger eigenvalue-sigenfunction problem is equivalent t0 the above 159-
perimetric problem—a fact which, following a more Precise statement
11-4(d) helow, is applied to the approximate golufion of certain atomic
problems,
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(Discussion of the constant K which appears in the Schriodinger equa-
tion 1s reserved for 11-2(d) below.)

11-2. The Wave Character of a Particle. Second Derivation of the
Schridinger Equation

Prior to the diseovery of the Schrodinger equation, e Broglie hag
developed an approach to fhe theoretical study of the atom which ig
based upon what he considered a fletitzous wave churucter nssociated with
a material particle. The theory was presented as a physically platiisible
basis for certain inherently arbitrary rules of procedure In théMolder
(1913), narrowly successful, atomic theory of Bohr.  Iuasmudh™as Schro-
dinger’s application of “his” equation to the hydrogen atoni(11-3 below)
yielded the same (experimentally verified) cnergy hiuélén. as the Bohr
theory, he sought to develop a conneetion between i own work and
the wave theory of De Broglic. He found the de€i¥td conneetion with
the aid of Fermat’s principle (Chap. 5), the prinaple of least sction {6-6),
and the form of classical mechanics embodleddn.the Hamilton-Jacobi dif-
ferential equation (6-5). The extreme im’;}oftance of this conneetion
achieved full recognition with the almost Mmultancous establishment of
the physical wave character of electrons through the experiments of
Thomson, Davisson and Germer, ahd others,

(a) In order to develop the.&kence of the connection between the
Schrodinger cquation and th@&\wave character of material patticles we
consider bricfly a few aspegts}of the subject of wave phenomena in general.
For our present PUrposes we may define a wave as a ‘' disturbance”
¥ = ¥(r,yz)t whi.(}h‘is propagated through space so as to be described
by the equation 4&" :

A _ 1o
¢ VY = @

:§ "/
where uls a positive constant. (In the case of a plane-polarized light
waye for example, ¥ may represent the associated electric ficld inteusity
as'a fanetion of position and fime. For a sound wave traveling through
& gaseous medium, ¥ may represent the longitudinal displacement from
equilibrium of the gas particles as a funetion of position and time, ete.}

An important type of solution of the wave equation (7) is that whieh
can be written in the form

¥ = Ya,y,2)e, @
where
e = 008 wf — £ 8in wf (2t = —1) )

} Az usual, ¢ denotes the time variable.
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and @ is & positive constant. Substifuting (8) into (7}, we obtain
2 w®
AW+ P =0 (10}

a3 the equation which must be satisfied by the position-dependent func-
tion ¢ if (8) i a solution of the wave equation.

(The fact that ¥ is a complex funetion {(of real variables) should not
be digturbing.  Bach of its real and imaginary parts taken separately is
a solution of the wave equation! (7); either may thus be used to e¢harac{\
terize a rea! physical quantity.) N

The equation (10} for ¢ we call the time-independent wave equﬁﬁo\n.

With the aid of (9) we sce that the function ¥ given by (8) isa periodic
funetion of time with frequency (w/2r). Such a solution éf “the wave
equation is generally termed monochromatic. A more eneral solution
may be constructed as a linear superposition (either s or integral) of
monochromatic solutions involving more than a single frequeney.

To simplify the discussion we temporarily li%i’;t.\cbnsideration o the
case in which the disturbance ¥ is a functiod ef only one of the fhree
space varinbles —x, for the sake of definitéugss. In this case we have
Vi = (d¥/dx?), so that (10) becomesv.;.’j'"

dy | e, _
1Sy -o.

P4\

& i
Of this equation we chooai@xs’particu]ar solution

“’t’_ inT :ia! .
.~\"""_06 (:0 u)

N }
where (' i an, giPitrary constant, real or complex. With (8) we thus
have {or a mo’%éhromatic solution of (7) which depends on & and ¢ only

N,

\'"\; - I = Ceitpx-—mt} (p = ;_‘:;) (11)

As stated above, we may employ eit

(11) to represent the physical distur : bed by (11):
We note the following properties of the disturbance described by {11):

() The disturbance is the same at all points lying m aby plane
¢ = constant; ¥ is thus said to represent a plane wave. )
(i) The amplitude (maximum value with Tespect to time) 13 the same

at all points of space.

her the real or the imaginary part of
hance which constitutes the wave.

!8ee cndl-chapter exercise 1.
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(iii) The value of the disturbance iz the same, at any instant ¢ on
any pair of planes x = constant which are separated by the distance
A= (2r/p) = (Zru/e) or any integral multiple thereof. The guantity
A ig called the wavelength of the disturbance.

(iv) If an observer moves in the » direction with a velocity such thgt
(pr — «f) remains constant, the disturbance as scen by him at his posi-
tion is the same at all instants of time; the required velocity—such that
(d/dt)(px — wi) = 0—is clearly (dz/df) = (w/p) = v. Since uisa con-
stant, it is thus evident that the entire disturbance pattern is propagated
in the positive = direction with velocity u. The quantity (g N'ot) is
called the phase of the wave; surfaces of constant phase travel in the
positive x direction with velocity u, the so-called phase veiqc’@n We note
in passing that the direction of the wave motion iz normalith the surfaces
of constant phase. 1,

(8} In (a) above we consider the phase velocity’}\bo be constant, the
same at all points of space. To generalize welshppose that 1 = u{z),
a slowly varying positive funetion of z in theisbﬁse that!

K
é’}-é E = ‘(b' ’

dx « Ay 95

With this restriction on the magﬁj’ﬁude of (du/dz) it is meaningful to
agsign an essentially constant phige velocity u and a corresponding wave-
length A = (2ru/w) = (2r/p)\within any region over which the phase
(with ¢ = constant) varif:{;“By no more than a small integral multiple of
2r; that is, we may speak of a “local” phase velocity and of a “local”
wavelength, The frequency (w/2r) is assumed strictly constant.

A second gencralization is to replace the constant (' by a slowly vary-
ing funetion Clahwith the restrietion

G

N 9 «[9;
3 dx x x

N
&

AN
we&'}ﬁ;ay thus also speak of a “local” amplitude. Of especial significance
is tie fact that (11)—with ¢, v, and P = {w/u) functions of x—is approxt-
mately a solution of the wave equation (7) in so far as we may neglect
the derivatives (2C/dx) and {du/dz),

For a final generalization we return to the case in which ¥ (and there-
fore ¥) may depend upon all three space variables ¥, ¥, z. For this pur-
pose we consider the monochromatic disturbance

¥ = Clayz)eteva—u (g regl), @2

! The symbol « iz read “is small eompared with,”’
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in which C and the first partial derivatives of ¢ are slowly varying func-
tions of position; i.e., the relative variations of C, (3¢/9x), (8¢/3y),
(3¢/d2) are all small in any region over which the phase [¢(z,y,2) — wf]—
with # = constant-—varies by no more than a small integral multiple of
9r. We maintain the sirict constancy of the frequency (w/2r).

We observe, by direct substitution, that (12) is an approximate solu-
tion of the wave equaiion {7) in so far as we may neglect the first partial
derivatives of € and the second partial derivatives of ¢—provided that

o w O
VGasen T Gero T e e (5P

The direction of wave motion at any point is defined as tha‘b\of the
normal to the surface of constant phase (with{ = constant)}t'hﬁ‘ough the
point, in the scuse of increasing phase. For the disturbafnée (12), there-
fore, the direction of wave motion is clearly in the ditedtion of the gradi-
ent? of ¢—namely, V. For an observer to travelimthe direction of the
wave motion so that the phase as seen by hi ‘ab his position remains
constant (along a curved path, in general), {his' velocity—of which the
three components are {(dz/df), (dy/db), (tgz/éft)'——must be such that

d dpdr  aad) , ddz _  _ g 14
d'_.r.(qf’_ﬂ)_@?i_t—i:jg’)y’dt adat ° (19

U =

The first three terms of the middle member of (14) constitute the scalar
product® of ¥¢ and the bgéﬁrer’s velocity; since this velocity ha? the
same direction as V¢, the sealar product must be equal to its magnitude
(ds/dt) multiplied hy ghe ‘magnitude of V4. That is, (14} gives

R & o (15)
z(% . )
Comparison of (15) with (13) demonstrates the equivalence of % with
(ds/ C%Z’\t'hé speed with which a point of a given surfaee of constant phase
travels/in the direction of the wave motion. We th"lﬁ Fonclude thmi
% = ufx,y,2) also plays the role of a local phase veloeity 1n the genera
case represented by (12).
Under the assumption of an essentially constant jv¢] made herP}, tﬁ
may, as in the preceding case, define & local wavelength by means o

relation A = (2ru/w) first introduced in (iit) of (a) above. Thus, accord-

1 Bee 2-12 for the definition of V.

* The direction of V¢ at any point (see 2-12(2
through the point, in the sense of increasing ¢.

% Bee 2-12(b).

N is normsl to the surface ¢ = constant
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ing to (18), we have
27

V(96/62)° + (06/09)% + (60/02)t

It is directly verified that A, so defined, is the distance between surfaces
¢ = constant for which the difference of phase in (12) 1 equal to 2r (with
¢ = constant).

The results of the preceding paragraphs are of use in the derivation of
the Schrodinger equation which follows, )

(¢} Tho discovery and development of a new mechanical theorydehich
would be applicable to the atom was made necessary in the f rstyquarter
of the twentieth century by the failure of classical mechanigstho “provide
& description of atomic phenomena consistent with the tremefidous body
of experimental results which had been compiled. Cladsical mechanies,
completely successful in the deseription of macrosgopic events, broke
down in the attempt to apply it to phenomena oeCUwring within the con-
fines of atomic dimensions, AY;

This fact calls to mind the analogous faillire of geometrical optics:
While it is completely adequate so long s)one deals with lurge-scale
optical phenomena, geomectrieal optics fails to describe the behavior of
light in the presence of apertures or oBstacles whose linear dimensions
are comparable with the wavelengthg of light. That is, the phenomenon
of the diffraction of light, is not af ull comprehensible within the frame-
work of geometrical optics. h order to deseribe and understand dif-
fraction one must appeal 6\the ware theory of light, which, in EESENER,
has its mathematical formulation in the wave equations (7) and (10} of
(a) above.

Schrodinger, in one’sf his early papers, projects the idea of the possible
need for a waye theory of mechanics to deseribe the submicroscopic realm
of phenomena/ie“which classical mechanies has broken down. In the
developmentsof this idea he sets forth the following double analogy: The
relationghij} of geometrical optics to classical mechanies is the same as
that of(Wave optics to the required “wave mechanics.”  In mathematical
tering the analogy is set in the form: Fermat’s principle (Chap. 5) bears
the same relation to the least-action principle (6-6) as does the time-
independent wave equation (10) for light to the required “time-i ndepend-
ent wave equation for mechanigs.”

The development of Schrédinger’s double analogy toward the dis-
covery of g time-independent wave equation for mechanics runs essen-
tlally as follows:

' Fermat's principle, aecording to 9-2, requires the extremization of the
Integral

(16)
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™ ds
I . (17}
with respect to paths connecting two given fixed points. Here
u = u(z,y,7) 1s the local phase velocity of the light—the quantity which
also appears in the wave equations (7) and (10). According to 6-6{(c)
the least-action principle, applied to a single particle of mass m, requires
ihe extremization of
L= v [ VE=Tis (18)
N\
with respect to paths connecting two given fixed points. Here £ 1s\th(,
actual eonstant tolal energy, and V = V(z,y,2) is the potential cnergv ot
the particle.  Thus we may effect the analogy befween the optwa,l and
mechanical principles by “assigning” to the motion of the pa,tﬁmle a local
phase velocity which is, according to (17) and (18), invepsely propor-
tional to v/ — V. With Schrodinger, therefore, wedétine the parkicle
phase velocily ns \
4 D .
LETES T
where A is & coustuant whose detcrmm&tién is made directly.

If the phuse associated with the pa.rt?irfle motion is denoted by (¢ — i),
it follows from (13} and (19) ths,t‘ % must satisfy the partial differential
squiation &

\

ag\' , (B8Y 4 (24) - & - (20)
(E) AN B-y) +(az) _Az(E V).

al in form with the reduced Hamilton-

Hquation (20}, we, notlco is identic
the assumption

Jacobi equ 21’(1011»{1) of 11-1(a). This fact makes natural
that ,\\

fr{)m\ﬁ?ﬂ%ich it follows, aceording to (1) and (20}, that
@ @2)

P = mell

: 1
here K1 is o constant whose determination is left to experiment. o the
The Schridinger double analogy is ecompleted by qubstituting into

time-independent wave equation (10) the phase velocity given by (19);

in the work following, ope

1The effcct of the relation (22) is merely fo replace, slacement i

undetermined eonstant (A} by another {Ki)- The reason for this rjg e
subsequent convenience; £, turns put to be an easily identified WRTVETS
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together with (22): We obtain

as the required time-independent wave equation associated with the
motion of a particle of mass m, having total constant encrgy E and
moving in a field of force described by the potential-encrgy function
V = Viz,yz).

By identifying the constant K with the reciprocal of the constant £
introduced in 11-1(a), we indeed observe the identity of the particle wave
equation (23) with the Schrédinger equation (4), derived independently in
11-1{a). (For reference below we record the equivalence A

1 "\
K= Tf) N @

The success of the Schridinger equation in the degtfiption of atomic
phenomens thus justifies the optical-mechanical dguble analogy set forth
by Sehrodinger as well as the wave concept of mabter first conceived by
De Broglie and further developed by Schrodinger along the lines indi-
cated in the foregoing paragraphs. $ ,\

It is to be kept in mind that the a.bqv%e: derivation of the Schradinger
equation based upon the analogy of optics with mechanics is purely heu-
ristic, by no means rigorous. In patficular it is assumed throughout that
the first partial derivatives of the*function ¢(z,y,2) are slowly varying
tunctions of pesition; yet nouch assumption underlies the validity of
the Schrodinger equation’i‘n,}ts application to specific atomic problems.
The merit of the Schrédinger equation resides in its deseription of atomic
phenomena consistent™with the results of experiment and not upon any
‘particular method\dPits derivation.

(d) The experimeénts of Thomson, Davisson and Germer, and others
on the djﬂ'ra{titm of electrons, executed more or less simultaneously with
Schrodinger's early research in quantum mechanies, provide a justifica-
tion of the line of argument of (¢} above even more direct and more
Str}khjg\than the stated success of the Schrodinger equation. The wave
charadter of material particles manifested in these electron-diffraction
experiments made nocessary the assignment of & numerical wavelength
to an electron moving with given speed. From (16) of (b) above, together
with (20), (22), and (24) of (¢), we have

A = ___g:-'r_K____ - ?m'K, (25)
Zm(E — V) mo
where v is the “classical speed of the particle under consideration.!
' According to 8-6(c) we have (E — V) = imv?, whenea the final form of (25,
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The equation (25), derived first by De Broglie on an entirely different
hagis, is preciscly the relationship between wavelength and speed required
by the results of the electron-diffraction experiments! The conseguent
experimental determination of the constant 2rK shows it to be identical
with the Planck constant of action (usually denoted by “A”), a universal
eonstant which made its first appearance (1900) in the Planck theory of
black-body radiation! and soon after (1905) appeared as a fundamentsl
quantity in the Kinstein theory of the photoelectric effect (see (¢) below).
The validity of (25) as applied to atomic and subatomic particles (in
addition to electrons) and even to molecules is well established by &
experiment. ol

() A direct cxtension of the portion of the argument of () alove’
which employs the reduced Hamilton-Jacobi differential equation eads
to the assignment of a specific value to the frequency (w/2x) assbeiated
with the motion of a material particle. Following the siideess of the
sssumption (21)—namely, that the space-dependent tetning of the phase
{$ ~ wf) is proportional to the solution S* of the\reduced Hamiiton-
Jacobi equation—it appears natural to assume th% e itself to be pro-
portienal to the solution S of the full (time-depeadent) Hamilton-Jacobi
equation (33) of 6-5(a), with the same constant of proportionality.
According to (36) of 6-5(b) we have S &\8* — Et, so that the stated
assumption reads ON°

¢ — wil =..Kf(';§* — Ei),

whence, because of (21) and (,2%}}
N E = K. (26)

The relation {26) is sderitical with the Einstein equation {1905) rel?,ting
the frequency (w/2#)0f a light wave to the énergy E of each associated
light corpuscie (photon). Since the frequency, unlike the Wawle’,lgth A
associated with%e motion of a particle eannot be measur"ec’l directly,
there is no dizget cxperimental verification of (26). The validity of (26)
is intimatély connected with the validity of quantum mechanics a8 &
whole, oh/purely theoretical grounds, however.

11-8. The Hydrogen Atom. Physical Interpretation of the Schridinger
Wave Functions
(@) In applying the Schrodinger metho
fixed atomic nucleus and a single electron (of “’hi"h the hydrofell :z?ﬁi
18 an example), we limit ourselves to the dern.ratmn of only t (15:0 ordi-
tions which possess spherical symmetry. Thatis, weuse spherica

d to a system consisting of &

1 8ee exercise 25 (), Chap. 9.




272 CALCULUS OF VARIATIONS 18113

nates (r,8,¢) and seek only those wave functions ¢ which are independent
of the angles § and ¢. An analysis more complete than ours shows that
the lowest energy state—the so-called ground, or normal, siaic, in which
our interest mainly lies—possesses this symmetry, so that we do not miss
consideration of it through the restriction

¢ = ¢(r). (27

We start here with the extremization problem rather than with the
Schrodinger differential equation to which it leads.  That is, we seek to
extremize the integral (3) of L1-1(a)—with the appropriste potefitial-
energy function V inserted—with respect to funetions of the imm (27).
Tor this purpose we employ the three identities (27) of 9- 2{c),, thh w =y,
squaring and adding, we obtain « \

dy R
2 2 : = (V]
’1&: + 'J,‘H + 'Ibz (d.r) ..,‘\\ (28)
since, according to (27), ¢y = ¢, = 0. \ .

If the magnitude of the fundamental elcntm\ﬁc charge measured in
clectrostatic units is denoted by ¢, and if the (‘hal ge on the atomic nucleus
under consideration is Ze, the potentlal e.nerg,y of an electron moving
under the influence of thlS nueleus 1 Is

V;:’. ¥ Z_E‘, (29)
\) r

.

where r is the distance frgm the nucleus (considered fixed in position)
to the eleetron; both ak¥é\considered as point charges.  With (28) and
(29) the mtegml (3) Qi‘ l1-1(a) becomes

] L\)( ]i 2m ( )2 - (Z—éz + E) W] 7% sin 0 df dg dr.  (30)

(In ac cord&\ce with (26) of 9-2(c) the jacobian of the transformation
from ca\rt,esmn to spherical eoordinates is r? sin #, so that dz dy dz in (3)
is yeblaced by 7° sin 6 df dg dr in (30).) Since ¢ is a function of r alone,
intewfation over the angle variables in (30) is carried out dircetly:

”””f[%(df) “( +E>‘*"J . D

We seek the functions ¥ which extremize J*.
We introduce into (31) the new independent variable

_r )
= (32)
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where a is a positive constant whose value we determine directly. Fur-
ther, we introduce the auxiliary constants

2malE MnaZe
&=~ and 8= m;,g <, (33)
go that, with (32), equation (31) becomes
WK [, . '
1= ﬁ (82977 — (B8 + oty s, (34)

where the prime (') indicates differentiation with respeet.to £

The possibility of bringing (34) into the form exhibited by A85) of
8-3(b) suggests Lhe substitution O

¥ = Qe 3t “‘ 3 (35)

whereby (34) becomes

S
= 27"{%2“ [ ot |52Q’2 — £20Q" ~ {(a - i;){f*"‘«“‘ 55] Q2] 2
m o 1 ) "4’ »

‘%%(QQEQB_E)] * 69

Wk [ ° 41 2 )

\ a._ o
since the integral of t-}w}llal term of (36)—mnamely, $0°£° {Io —must
vanish in order to ensum the existence of J*, )
Comparison of437) with (35) of 8-3(b), with & = 1, makes evident ’?he
convenience sdryéd by giving to the constant ¢ that value for which
@ = —1—of Niccording to the first of (33),

'”\:'Z'\":’ a = «—-———_.K_. (38)
N/ / —8mE
the problem of determining the

Thus, according to the second of (33), '
determining the eigenvalues of 8,

cigenvalues of % is reduced to that of

with the correspondence
7% 39)
E = - ggag |

us we find with the aid of (38). (The fact of rest..ric.ting the eigeu};.ra}_uzfli
of H to negative values only by choosing & < 0 If: ']uSt'lﬁid by P ys]fuc;
considerations: The energy levels of an clectron “bound ' to a puclet
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must be negative, since a posifive amount of work is required to remove
the electron o a position of rest infinitely far from the nucleus—in which
state its energy is zero.) With the choice a = % the integral 37)
becomes

[+ = 2% ﬁ T et — (8 — D@L (40)

Reference to 8-3(b) reveals that for nonnegative integor values of
(8 — 1) there exist extremizing functions @ for which the integral I*
exists; Z.e., we have for the eigenvalues of 8

N

O\
B=n=1223 .... N\ (41

N

The corresponding eigenfunections are, aceording to 8~3(b)‘,'&,
Q=0u=CL® (= 1,230, (42)
where L, (¥) is the Laguerre polynomial givm}{grjplicit!y by

4 d?l—l ..\“
L (p) = @_e—lﬁédf—,‘q(e—f?"):}’ (=123 ...); 43

™
€', is determined in accordance with.glte requirement of nornialization

@ fir fa . ~:" - = e
1= ﬁ] fo ﬁ] Yir? sin @ 4 d?»d?' = %ﬁ) Virtdr = 4ra3L Yott dE
L ...\ o
= drat [ oQip sz e [ Lo o)1 ds. (49)

With the aid of (43) #& evaluate! the final integral and so obtain

¥/

P\ 1

N Cp = —= .. (45)

\“\ 4/ 8rnlad

We 11Q§§,}urhher, that the constant a depends upon E, according to

(38), anidherefore upon the index 7, according to (39) and (41); that is,
we\ﬁ‘ar,ve

K
= = 46
@ =t 2mZet (46)

Finally, we .have for the normalized eigenfunctions which depend only
on r, according to (32), (35), (42), (45), and (46),

. 1 = r K2n
V= R (—) ( = guz)

_ * Bee end-chapter exercige 3,
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foen=1,23, . ... The corresponding energy levels are, according
to (30) and (41),
B o mZ
T oK )

In particular we have for the lowest energy state (n = 1)—the ground
state—of the system consisting of a fixed nueleus and a single eleetron

1 o r 3'551 K?
— _ N 2 f ) = =
i Ve’ (‘11) +/8nat (al 2mZe2) . &

: A\
(as we find with the aid of (43), with n = 1) and e\
mZ %t A\ N
Bi= = g 2 0

N

() Consideration of possible # and ¢ dependence"}’)f\the wave func-
tions yields the same set of encrgy levels as the sqt:given by (48). The
ground state is nondegenerate; 4.e., there is b {4 single eigenfunetion—
namely, (40} which corresponds to the lg¥est energy eigenvalue given
by (50). The higher energy levels a,lje: gll degencrate, with - and
¢-dependent. eigenfunctions, in addifion to the spherically symmetric
function (473, arising for each va}tré.’éf n = 2 (In the sections follow-
ing—in particular, in 11-5(&:)—“—“’& have occasion to use only the eigen-
function (49) for the ground Q‘Jate.)

The encrgy levels (48) a{é.precisely those given by the old Bohr t‘heory
(1913) and are found ‘t&gree with the levels obtained by experiment
upon hydrogen atomsNZ = 1) and singly ionized helium atoms (Z = 2)
to within the refinéd corrections which are accounted for by considering
the intrinsic apg{ﬁi;- momenta (spin) and magnetic moments of the elee-
tron and nudléws. (If, instead of assuming the nueleus to be at rest, we
take into gsount its translational motion, the mass m must be relplaced
by the ’s‘,(')’-'éalled reduced mass u = [mM/{m -+ M), where M is the
nucleay “Tass, in all the results of (a) above. Since for hydr(?gen the
ratio (m/Af) iz (1/1837) and is about one-fourth as la}'ge for heh_um, the
ratio [(m + 3)/M] of m to p is quite close to unity; the difference

between m and g is sufficiently large, however, to be detectable in meas-

urements of the energy levels of hydrogen and sing:,ly 1mnua:ed helium
atoms through the determination of spectral frequencies. ) . i
(¢) While the meaning of the eigenvalues of E was 1’mde'rstood flmmem;
ately on the first applieation of the Schrodinger faqua’mon} it was, for 53 t‘;
time after, uncertain what physical interpretation s_;hcu]d be asmgn? o
the corresponding eigenfunctions. The interpretation of the wave I

* Bee exereise 7 at the end of this chapter.



276 TALCULUS OF VARIATIONS [§11.3

tions whose eventual universal acceptance has been complet-e]y_justjﬁed,
hecause of theoretical consistency as well as through successful compari-
son with experiment, reads as follows:

We suppose ¢ = ¥(z,1,2) to be an eigenfunction, corresponding to g
particular eigenvaluc of E, of the Schrodinger equation nvolving a given
potential-energy function ¥V = V{z,y,2). The quantityt ¢, a funetion
of position, is interpreted as the position probability-density funetion of
the particle whose potential energy is V; that is to say, if we seek to
locate the given particle within a volume element. dx oy dz at the Doint
{#,4,7), the probability of our finding it there is given by ¢ de dy de.
The probability of our lecating the particle within a given regidnef space
having extended dimensions is, accordingly, the volumeNntegral of
the function ¢2 carried out over the given region. If Particular the
normalization &

[tz dydz = 1 "

takes on special significance:! The prubabili;y‘%f locating the particle
somewhere in space Is unity; the particle is a.ss)ifned to exist, that is.

We note two salient features which dighihguish quantum mechanies
from the classical mechanics studied in@hap. 6:

(i} In classical mechanics a conse;iréﬁive motion msy have associated
with it any value of the total energy greater than the absolute minimum
of the potential-encrgy function. By continuously varving the initial
conditions of a given problem} it is possible to obtain a continuous vari-
ation of the total ener v(&ssoeiated with the problem. In quantum
mechanies, on the othehand, we find problems in which the total energy
is confined to sets of@hserete values—the eigenvalues of the parameter E
in the corres;aond@g Schrisdinger equation. In such eases the energy is
said to be quoptiged.

(i) The \s\mtion of a problem in eclassical mechanics consists of a
detailed glé,}a;cription of the motion of the particles of the system involved;
f.e., j;@e"s’cilution gives the position and velocity of each particle for all
instants of time once the initial positions and velocities are prescribed.
In gquantum mechanics, however, no such description is possible. All
that one obtains in a solution to a problem is the relative probabilily of
the existence of various position configurations?® of a given system.

T Inamore complete study of quantum mcehanics than the present one the admissi-
bility of complex eigenfunctions ¥ Is generally shown to be necessary.  If  Is complex,
th(_a quantity |¢[?is employed as the position probability-density funetion inasmuch as
¥*1s not restricted to real nonnegative valyes, If g is real, we of course have |2 = ¥*

! The integral is carried out over gfi space.

* A more extensive development than the present one affords a veloeity, or momen-
tum, probability distribution as well,
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The fundamental physical ideas underlying the above features which
distinguish quantum mechanics from classical mechanics are erabodied in
the so-called principle of indelerminacy, or uncertainty principle. This
principle takes into account the fact that the experimental determination
of the position or velocity of a particle involves a disturbance of the
particle’s motion by the agency of measurement and that this disturh-
gnee is necessarily indeterminate in both magnitude and direetion. The
degree of indeterminacy is negligible when one deals with large-scale
events; but when the objects of measurement are atomic or subatomiein
size, the Indeterminacy wssumes full significance. Accordingly,, sinée
pne caniol delermine, by experiment, the precise location and grelgeity
of an atomie or subutomie particle, it is in a certain sense meahingless to
speak of its precise loeation or velocity; one should treat~enly of the
probability distribution of its location or of its veloéity‘ Quantum
mechanies supplies onuly sueh information as is veriﬁs’ﬂﬂé by experiment,
and so avoids sneh *meaningless’ concepts as orbits, position as a func-

tion of time, ctet AN
,”,\“ .
11-4. Extension to Systems of Particleg,YMinimum Character of the
Energy Eigenvalues R

{a) Extension of the Schrﬁdinge,r:ﬁheory to s system of s particles may
be carricd out in the manner iniwhich the Schrédinger equation for a
single purticle is derived in 413 (e). In place of (1) of that gection we
ronsider the redueed I'Iam'rll};on-J acobi equation for a sysfem of s particles,
whereby the simple trio‘ef terms

STy | (3 (2]

oy-Em Ka—x) * (_3‘3) "\
:“\.‘0

in {1) is 1'9{7@45’(@ by the sum

s ) . F ray b
~O L [{aS*Y (6_@_*) (3_*.5_) ]
N 2%[(?’) o) T\

i=1

where =;, y;, 7; are the cartesian position coordinates and ;. is the mzss
of the jth particle. The potential-energy function 1F/'——Whlch depen: s}
in general, upon the 3s coordinate variables—deseribes the system o
forces which influence the motion of the particles of the system.

! For amplifieation of this necessarily brief discussion of the prineiple Ofc::;i;tiz;_
Minacy the reader is referred to the abundant literature oo moderh a,tolgn Ilg nE(130 New
See, for example, Max Born, “ Atomic Physics,” PP 85-90, Hafner tub. 250
York, 1936,
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The procedure of 11-1(a) is followed' until we arrive at the 3s-tuple
integral carried out over the infinite range of each of the coordinate
variables:

el SR+ ()]

il

+ (V- Ew} [ o sz (o0

i=1 N\
The extremization of (51) leads to the Schridinger equation for, {he ‘given
system of s pariicles—namely, O
a K? y ( 3 "
z—ﬁ—l;v_,-up +(E— VW = 0’...."\‘ (62)
J=1 4
where we write N
2 2 &
v = LWLV e (53)

dxt - oy | 94t

{The derivation of (52) is left for exercite 4(b) at the end of this chapter.)

As with the single-particle equaslon (4), the solution of (52) presents
an eigenvalue-eigenfunction problem: Any value of & for which there is a
solution ¢ such that the integral (51) exists is an eigenvalue of E; the
solution ¢ is the correspond}n}g eigenfunction.

(6) The physical intéxpretation of the eigenvalues of E in (52) is
identical with the infebpretation in the single-particle case: The eigen-
values of K are tl}e Physically realizable values of the total encrgy of the
system under thginfluence of the potential energy V.

Similarlyy, ¢he physical interpretation of the eigenfunctions of (52) as
applied f;qs'émanymarticle atomic problem is a direct generalization of
the inﬁ@pi‘etation of the single-particle wave functions which is presented
in 1943 (¢): The quantityt y? [[ dz; dy; d2 is the probability of simultane-

i=1
ous location of the first partiele of the system within the volume element
dxy1 dyr dzy ab the point (w1,,,21), the second within the element die dys d22
ab (¥2,9z22), . . . , the sth within the element di, dy, dz, ot (24,7:,%s)- Or
if we wish to regard the position configuration of the entire system as
described by the 3s coordinates of a single point in a space of 3s dimen-

* The details are eft for end-chapter exercise 4(a}.

1 See footnote, p. 276: If ¢ is complex, we must replace Y& by |2 ag the position
probability-density funetion.
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sions, we have the equivalent statement that y? H dz; dy; de; is. the prob-
F=1 L
sbility of the system’s location within the (3s-dimensional) volume ele-

E
ment [] dzj dy; dz; at the point (@s,y,21,2090,22, . . . Zoyen). Sinee it
i=1
is assumed that the s particles of the given system are located somewhere
inspace-—-or, in the equivalent deseription, that the single point describings
the position configuration of the system is located somewhere in the space
of 35 dimensions—-we must require the normalization O

7\
Ny

ff S f v* fl dz; dy; dgj = 1. (54)

i=1 4,

(¢} We consider briefly the special case in which $he "ﬁgtentia.l-energy
function 1" which describes the forces influencing the ‘motion of a system
of & particles eun be written as a sum of terms e 0 of which involves the
soordinates of only one particle. That is, wédeal with potential-energy
funetions of the speeisl form

")
s > 3

V= E Vil 2)- (55)

EEE
If V has the form (55), the sasny-particle Schrodinger equation (62)
possesses solutions which are prdduets of functions each of which involves
the coordinates of only o&article—namely,

AO7 = ]I v@ ).

S i=1
For if we gd&ﬁitute (56) together with (55) into.(f_:2), we obtain—on
noting f 1‘01,1\1:(’53) that Vi = (y/¢@)Vy? and on dividing through by ¢—

&

(56)

&

") Z K? v}wm_vj] +E=0. (67)

2, 49
i=1
We transpose to the right-hand member 2 single term—the kth, say—

of the sum over j in (57):

A 2.1,(5}
K* g3pw - — 1__19 Vb Vk]- (58)
D o st v 4B =
;‘-- .
(The prime of 3 indicates omission of the term j = k.) Since the right-
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hand member depends only on the independent variables 2:, y, 2, and
since -the left is independent of these variables, we conclude that each
member is a constant, which we denote by E®. Since this result is

independent of the choice of %, it must be true forall j =1, 2, . | . , 5t
K2 Vi )
- o 55 - v - )
or - K2 .\
) z_wvjz,lp(ﬂ + (B — Vgt =0 =12, ... 0,‘?.\ (60)
Moreover, by substituting (59) into (57), we concludezt-h;fa.\t
E = z B, \\ (61)

=1

We thus have the speecial result; If V exhibigs the form (55), the many-
particle Schrédinger equation (52) possesies’ solutions which may be
written as a product of factors ¥ (z;,ype)y where each ¢ is a solution
of a single-particle Schrodinger eqqa.tmn (60}, for 5=1,2 ..., s
According to (61) the correspondmg energy eigenvalue of the many-
particle equation is the sum of the energy eigenvalues of the s single-
particle equations (60). In partlcular if an elgenvalue of ¥ in (52) is
nondegenerate, such a prodqct solution is the eigenfunetion,! if (55) gives
the form of V,

(d) Tt is shown in, ]ﬁ\l(b) that the single-particle Schradinger eigen-
value-eigenfunction,problem is equivalent to a certain isoperimetrie prob-
lem. In similarfashion it may? likewise be shown that the raany-particle
Schrodmger ;{r{\)biem may be so characterized. Namely, the extremiza-
tion of (D,Q\ef (@) above is equivalent {o the extremization of

-ff SISl @) @]

+ Vllf"‘} H day dy; dz (62)

i=1

with respect to functmns ¥ which satisfy the normalization condition

- ff f 4 H dz; dy; dz; = 1. (63)

i=1

* Explicit justification of this final statement is left for cnd-chapter exercise 8,
3-8ee énd-chapter exercise 4{e). .
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Moreover, the successive eigenvalues of B, arranged in the -aseending
order
I - SE.SE., 8,
are the successive minima of (62) in the following sense: The nth eigen-
calue B, is the minimum of (62) with respect to sufficiently regular func-
tions ¥ which xatisfy (63} along with the (n — 1) orthogonality conditions

H e f\bl.h— Il dojdydes =0 (=12 ... n—1)
i=1 A\
where ¥ is the cigenfunction of the problem corresponding to the eien-
value B, Discussion of the proof of this assertion is rescrved forexercise
B at the end of this chapter, by
Application of the minimum characterization of the Schrb{ﬁnéér energy
dgenvalues is found in 11-5 below. We omit discussiqnqu‘a- maximum-
minimum characterization such as that which appeds8 i 9-11({a) in rela-
tion to the membrane cigenvalues. N

11-§. Ritz Method : Ground State of the Hqﬁﬁn\l Atom: Hartree Model
of the Many-electron Atom M

(@} To illustrate the approximate «Sﬁ@lufion of a qua.ntum-mechanical
problem through the direct miningiéﬁt‘ion of the integral (62) of 11-4(d)
we consider the problem of finding the lowest encrgy eigenvalue for the
helium atom.  As in the 011e-eiéctron problem of 11-3(a), we suppose the
nueleus to be in fixed po 't’\émxat the origin of coordinates; the two elec-
tron positions are descrihed by the sets of cartesian coordinate variables

(21yn,21) and (zs,ymza), Fespectively. The potential energy is given by

»\:\ V=Vt Va2t Vg .. (64)
where '\\“ .
A\ &t .
N . (6
~) i
with\ y
r=2f oyt (=12 (66)
and : ' :
e
ria = 4/ (e — 21)? + (yz — y1)? -+ (s — &)™ 67

The term V; of (64) represents the interaction betweer the rlluclsu;s ?:;i
the jth electron (j = 1,2); the term Vs Tepreseiits the interach:o 'eh“ 3
the two electrons. The quantiﬁy e is the .f“nd?'ment.&l. electromic cnAIge,
a8 introduced in 11-3(e)." N '

In place of the Schrodin

ger problem defined by the relations (64) to
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(87) we consider temporarily the problem in which (65) is replaced by

2
Vi= — _'?‘;'_ = 1:2)1 Vi = 0; (68)

i.¢., We suppose no interaction between the electrons and leave unspeci-
fied the electric charge (Ze) on the nucleus. In this problem the result

of 11-4(c) is applicable, so that we may obtain a solution of the form
N\

¥ = ¥ (R, 2P (@0, y222); A (69)

»
where ¢4 is the solution of a Schridinger problem involvl{?g the coordi-
nates (z;,5;,2) only, for each of j = 1,2.  According to{60) of 11-4(c), $@
is an eigenfunetion of the equation ¢ O

K ypvo + (9 +2) yo @G-t @

with the aid of (64) and (68), and since &)= m. = m, the electronic mass.

Careful reference to the work of\l1-3(a) reveals that each of the
“separated”’ problems embodied? :i:n' (70} is eqguivalent to the problem
handled in 11-8(a)—with (z,yjzr) replaced by (zi,y1,21,71) In one case
and with (z,y,2,7) replaceddy (2s,y1,%:,72) in the other. The eigenfunc-
tion corresponding to tk{q’h}ﬁvest energy eigenvalue of the problem is given,
accordingly, by (69) aud "

';‘(ﬂ.\”:;“e'—'(r,'iﬂm) (’ _ 1 2) ar = K2
N~ A 8rad = B L7 omZe

I
as we ﬁn’&\ff‘om {49} of 11-3(a). Also, from (50) of 11-3(a), we have

(71}

:~\l.

) ) mZ et .
\\:“ B = By = — —2?{"2"- (? = 1,2) (72}

for the lowest eigenvalue of (70), and thus corresponding to the eigen-

function (71). We note, in passing, that the eigenfunction (71) is normal-
ized—mamely?

SIT@9) deydys des =1 (7 = 1,2). (73)

(b).Return'mg to the Schrodinger .problem defined by (64) to (67), w¢
substitute the product function (69) into the integral

! See end-chapter exercize 9.
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S @ @)

+ (I”[ + Vz 'JF' Vlﬂ)l}f!l di:l dy]_ dzl dﬁg dyg dz;, . (74)

whose minimum with respect to functions ¥ which satisfy the normaliza-
fion
TSI f* doy dyr dza da dyadze = L . {(T8)m

is the lowest energy eigenvalue of the helium atem, according to {62} an
(63) of 11-4(d). With the stated substitution we obtain I as a juetion
of Z; subsequent. minimization of I with respect to Z supplies an gpproxi-
mation from above to the actual minimum of I-—to the loWest helium
energy eigenvalue, that is. We proceed, in the paragraph& following, to
the achievement of this approximation. {(We note that' (75) is fulfilled
by the product [unction (69) by virtue of the normalization (73).)

We have, from (69), that (9y/dz1) = ¢® (6‘4{‘1 axy), ete., 8o that we
may write ¢ ]

&

Sl -y @) )
R GRER)

with & = (2/7). Watherefore obtain, with the aid of the normalization
(78)—with j repla:&d by k—and Green’s formula (32) of 2-14(e), :

Lk E Y (22) + ()i
EHWWwamJﬁwmﬁ(ﬁT%“Hﬂm@
3 [ e '

23 (e rimn ™

It

N]s
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where the final form is obtained with the aid of (70) and partial use of
(72). Further, we have use for the relation

fffff Vﬁpg dx]_ dyl dzl dﬂ?g d?j-z d252
- f f (W9)? day dys don f f f VW) da, dy e, (fc- - -?)

- f f f Vi(92)* day dy; dz; : G =142, ()

as we find with the aid of (69) and (73). R

Since the dependence of ¢V on the variables 2y, ¥, A widentical with
the dependence of ¢ on s, s, 2, aceording to (71Rand (66), the two
terms of the final member of (76) are identical;' welmay therefore replace
by 1 (or 2) and the summation sign by the fa¢€or 2 in the final member
of (76). For the same reason, and because the dependence of ¥y on
%1, ¥1, 21 is identieal with that of V3 on z¢, @, 22, according to (65) and
(66), we may similarly replace the ind'ex'j in the final member of {77} by
1 (or 2}. Thus, on applying the results/(76) and (77) to the substitution
of (68) into {74), we obtain, wit}y:tl’ie“ definition

Q = JTIIITV ()2 das dys dzs dics diye dis, (78)
the simplified expression_ <“

N
s (e

MY . (Wi)e
~f<“2E1 + 2(Z — 2yt ff : dus diny dzy + O, (79
2N\

ie- - V'l) day ff'!h dz + @
B!

¥

as we ﬁiﬁ‘ with the aid of (73) and (63).
Wérevaluate the middle term of the final member of (79) by intro-
dq‘cj\ng the spherical coordinates (r,8,¢)-—with omission of the superfluous
“subscript 1—as variabies of integration. With (71) we obtain

: (\f’{}'))Q ; } 1 = fdr ey
fff 1 4o dys dey = 8@t J, f f ¢ —— P sin g didgdr
1 0 0

1

- 80}
261 (

. We evaluate the multiple integral (78) in the following manner: We

first hold (-'ﬁzs.?l%zz) fixed and introduce a change of variables from (#1920

to the cartesian set (a},,7)), whose origin is the original ovigin of coordi-

The intogration ia earried out over the inflnite range of the variables involved i
both cases.
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nates but whon;e zy axis passes through the point {(xs,ys,22) ; the orientation
of the @} or y axis Is 1mmaterlal The ]acoblan of this transfonnatlm is
uity.! Moreover, we have = & + 3¢ + 4, so that we may mtro-
duce the transformation to spherlcal coordinates = -

! . .
xi = 7y 511 #1 COS ¢y, ¥, = risin &y 8N ¢y, .z'1 = rieo8 .

We thus have {(sce Tig. 11-1), according to (65) and (67),

2 2

. [ .
i e = — = — € y Lo
riz ATl — 2rgpc0s by O
with the aid of Lhe law of cosines. Since ¥ is a function of ry dloue,
z ' 'S\
- & N

(2yy2p TEN

&)
’\\”' Fra. 11-L.
aceording to {71), it iherefore follows that

P \ l .
[l‘ (217, d.lfi:a‘?ll dzy = f [ [ "&“)) 2V ygrd sin 81 d¢: db dre
\ gin 61 46 } .dh
_ MmAat
.\ 2‘“2 f (y)r l[ N 97y 008

..\ 3

&\ — Ot f ()2} l__ Wi+ Tre Frg)? — N rz)ﬂ]} dry
0

\ }

(A

/1 T ?"2’
= Zrel? L (,p(l}) 3?"% 2f?'g dr1 lr, re
— dre? {1— f " ey dn + [ ey ry

e—-(ﬂ/aljr‘s d?"l_ -+ 'f“._e—(m’m)?.-l drll o
203 T

_ & 2(0_.1) _ [2( )+ 1] ““”“"}'
21‘11 ?_-2 N !-"'g. ] .

! Bee end-chapter exercise 11 for the proof.
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With this result the evaluation of (78) is completed by means of the
transformation
Ty = 3 SIN &2 COS gra, Yr = rp 8in 0 sin a, Z2 = 7y CO8 0,

After integration over the angles ¢, and 8,—which results in affixing the
factor 4r—we obtain

= gg_z/(‘]” ()2 ’2 (':_:) - [2 (‘:_:) + 1] e~mm.)] 3 dpa,
= 4—;21 [ [2 (%_l.‘) e-(ﬂfﬂl) — [2 (?‘) + 1] e*(?ra{a,ﬂ’\;?dr‘z
1.0 2 2 e
Re? « \
= _i_ea_,z' i <‘..’" (81)

With the results (80) and (81) equation (79).réads

2 2 > 9 4
I=9B,+(Z -5+ i%%;'“{&z - z) me @

according to (72) and (71). In accq'rdé,h’ce with the procedure outlined
above we minimize (82) with respectto Z:

al _ 27\ mete _7 f(ar L\
7= ) Sl (i > o)
substituting into (82), ,vif:&\{)btain for our approximation to the lowest

energy eigenvalue of the helium atom

O _ {27\ met me

(N
This vallgi“é\ﬁrithin 2 per cent of the ground-state energy E, of helium
a8 determined by experiment. Although we have no theoretical criterion
for the'wecuracy of the result (83), its derivation as an approximation from
abazja,\validates the irequality B, < —2.85(me*/K?) for the helium atom.
\{¢) The larger the number of electrons per atom, the more complicated
is the problem of determining the energy eigenvalues and corresponding
wave functions of the atom. We proceed to discuss one of the standard
methods of approximation, the so-called Hartree method, which has been
applied to many-electron atomic problems with great success.

We consider an atom with nucleus assumed at rest at the origin of
coordinates, with s electrons associated with the cartesian coordinates
(w1,91,21), (Eoyazs), . . ., (T, n20), respectively. The total electric
charge on the nueleus is s¢, so that the atom as a whole is uncharged.
The potential energy of the system is given by
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V=EV"+'2’ZZ 2 (84)

k=1 kmlim]
where
Vi= =% (a=vATHTD
i k & (85)

represents the interaction between the nucleus and the kth electron, and

Vo= V== (8, (Vs =0)
(= V&= wl T G = g T & — @), (186)

I‘epleselltﬁ the interaction between the jth and the kth electron, (The
factor 3 appearing before the double sum in (84) takes care ‘of the fact
thateach ¥ = Vi, (5 5 k) appears twice, but must only be ounted onee.)

The Hartree method is based upen minimization of thé}ntegra,l {62) of
11-4(d) with respect to normalized functions ¢ whi\ch gxhibit the speeial

form AN
¢ = [ v2@y)" 87)
=1 ».

The normalization (63) of 11-4(d) 13 fu]hlled by requiring that each ¢ be

s"

normalized—namely, that
[TI)? deydypdi™=1 G =12 -9 (88)

We substitute (87) i11§0\§h‘2) of 11-4(d) and proceed to effect the mini-
mization of this integzal nwith respect to s sets of normalized functions
g g eI pon substitution there occur several simplifica-

tions which are gfabodied in the results directly following:
From (8:} QQ Have that!

oty + () + (] v
fff (2 1 (22 + (222 encnas ] [fiooraseues

a't:k ayk o
[f[{(amu) (6_'119)2 . (M)E] oy dydze (b= L2 9,
ax;c ayk s (89)

because of (88). Further, from (85) and (87) we have
j = k.

''We use I’ to indicate the absence of the factor for which
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ff f Vg [[ da; dy; d;

jml

= [[f vigen: dee dus i [T [ w0 da s
i1

- I v dmdgedn = L2, (90)
hecause of (88). Finally, we obtain in similar fashion, for m,(,h pair of
values of j and & (§ # k), \ . \

N/
%

ff fVJH!'/E H dig dyp d2zy .“}*'.}:

o~'

p=1 \
fﬂﬁf V@) ®)? didy; d2; dae dyo dae, (91
N
as a result of (87), (86), and (88). RS

Using the results (89}, (90}, and (91), we substitute (87) und (84} into
(62) of 11-4(d} to obtain

-3 s 1), (a:;’) (%)
+ (¥™)? [Vz. \12 fﬂ V(92 da; dy; dz,“ das dys dey (92)

¢
for the quarg&@.y whose minimum we seek. (We set
'®
:\\V' mlzmz_—.:'--z:ms=m,

the glectronic mass.)
Fﬁr the purpose of minimizing (92) we proceed in the following manner:
“V’e suppose all the functions ¢, @, | , ¢ with the esception of
one—say ¢ —to he correctly determmed for the minimization; we are
thus left with the problem of choosing ¢ correctly for the mintmization.

To do this we need to consider only those terms of (92) which involve the
particular ¢ —piz.,

e Wl C2) + CG2) + G5
IRaCEY + G5 + ()
+ oy [V‘- 4 E ff[ V(9?2 du; dy; dzJ-]] da, i 42 (93!
i=1
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(Omission of the factor § before the summation over j in (98} arises from
the fact that (7)* appears twice in the double (j,k) sum in (92), once as
coefficient of ¥V and once as coefficient of V. Since j and k run through
ol values from 1 to s independently, and since ¥V = Vi, the two terms
in which ()% appears in (92) are lumped together in (93).)

Sinee Vi = 0, according to the definition {86}, the term § = ¢ does not
appear in the sum over jin (93); thus sinee all the ¢ (j 5 4) are assumed
determined, the triple integrals over x;, ¥, 2 may be regarded as known
functions of a, .. z, within the integrand of I;. In faet comparison of
(83) with (5) of 11-1{h}—together with comparison of (88), for j =4 \
with (6) of 11-1{#)-—shows that the cxtremization of /; with respegtyto
normalized Tunetions ¥ is identical with the single-particle Sch{é&dinger

problem with the potentiai-energy function "\

7 %4

2

Fv 3 v s an @O
|

N\

i=1

Thus, aceording 1o {4 of L1-1{a}, with Ubvimmﬁl‘dtational modification,

we have

- . ',’
%VEW” + \ PATIRN Ly E /[f V)® da; dy; dzj-] o =0

i=1

(vag = g v ), =128 O

for the differential equat& which must be satisfied by the function
¥% which minimizes 4 (Since the result (94) holds for any value of
ifrom 1 to s, the désignation ¢ = 1,2, . . . ;818 affixed.) .
() From thu,a&it‘.\\;point of obtaining a solution for the fUI'thIOIl.S @ in
precise analyt&é} £ orm, the s equations (94), a gystem of nonlinearintegro-

different'ia}‘égillﬂtiolls, are of little use. They .dn, however, lend .?e;?-
selves to’% procedure of numerical solution which, although formidably
Q d of wide utility. The

laborigus, has yielded results of high accuracy an . ol
Procedure, roughly, is the following: ¥irst, one makes a simple reasonanle
assumplion as to the potential energy represented by t-h’e sum ove}i
7in (94) and then solves the resulting Sehrodinger equatmn for eac

VO = 1,2, . . . ,s). Thesesolutionsar¢ then inser?ed into their prl(;per
positions in the sum over j in (94) and a new golution of the resu mb%
linear differential equations for the various ¢ 1 effected. The process

o el ot e f solu-
of solution and substitution is reiterated until the SHLG:;SI% S(('eli‘i-ztment
lions for ¢ W Jiffe dently little from one ano er. R

he @ differ suffic - spherical symmetry, regtric-

of such simplifications as the assumption of
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tions according to the so-called exclusion principle, and other details of
the Hartree method are necessarily omitted from the discussion here.)

The physical interpretation of the sum over jin (84) is of some interest,
According to (86) a representative term of this sum is

fz -
ﬁ/—(l&"’)g dr; dy; dz;
Fiy

—the potential energy of a point charge of magnitude ¢ al (x,y.,2,) as the
result of its interaction with a continuously distributed churge Ghmag-
nitude density e(¢%)? which has the same sign (+ or —) s hat of the
point charge. If, then, we regard ¢® as the wave functigu associated
with the ith electron, we may split its potential energyeaccording to

(94), into the following s independent parts: ™
(1) nuclear influence represented by the term Vg &
2,3, ..., s the influence of (s — 1) contiwhous distributions of

charge of densities! — (y)? forj = 1,2, . . W) {7 # i}, each of which
is associated with one of the remaining (s =2) electrons of the atom.

But if ¢ is the wave function associ{a,t{aa‘ with the jth clectron, {($9)®
1s the probability-density function of the’jth electron’s position in space,
according to 11-3(¢}. 'Thus, in its.8léctrical influence upon each of the
remaining (s — 1) electrons of th&4tom, the jth electron behaves as ifit
were a continuous distribution-ef tharge of total valuez — ¢ whose density
at each point is proportiopalMo the probability density of locating the
Jth electron there. \

The foregoing modekof the many-electron atom——the so-culled Hartree
model—is surely ovérsimplified, for it is based npon the restricted form
(87) for the eleptrohic wave functions. It does, however, appear suffi-
ciently a-ccu}"até" to yield results in excellent agreement with a wide
variety of\exj}ériments.

O EXERCISES

1. Shai¥ that each of the real and imaginary parts of any solution of the wave

e’mm\ti‘gn (7) of 11-2(a) is also a solution of the same equation (7).
. ./In a given direction of space, superimposed plane waves whose fregiencies are
corfined to a narrow range are prapagated with velocities which depend slightly upen
the wave frequencies. It can be shown that any mcasurement of the velocity of
such a group of waves yields the so-called group velocity U, given through the formula

1 _, 40/
U™ " 4o
Show that the “matter waves” discussed in 11-2(d,e) are such that the group veloeity

is ide.ntical with #, the classical velocity of the particle with which & given wave is
associated. Hint: Use (25) and (26).

1'The charge on the electron, of magnitude «, is negative.
* Integrated over al] space, that is (see (88) of (¢) above).
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8. Use (43) of 11-3(2) to evaluate the final integral of (44). Hinw: Bubstitute (43)
for one factor of the integrand and integrate by parts (n — 1) times. Take note
that the factor [$0.9,0¢)] s a polynomial of degree n, so that (n — 1) differentiations
“destroy " all Bt two of its terms,

4, {@) Carry through the procedure of 11-1{g) in order to derive (31} of 11-4(a).

by Use Y-1h) to derive (52) from (51).

f¢) Use -10c1 to prove the statement in the opening paragraph of 11-4(d).

. {a) Prove the erthogonality relation

I dedyde =0 (95)

for the Sehradinger vigenfunetions if By = By, Hint: Use (4) with v = ¢;, B = By
then with ¢ = ¢o, &£ = F; compare 9-6(b).

Further, extend the validity of (95) to include the case E; = By (f # k) by m‘e&ns
of the argumcnt (Sehmidt orthogonalization proeess) of 9-6(¢).

(8} Extend tle results of part (2z) to include the eigenfunctions of t}:te many-
particle Sehrédinger equation (52). HinT: In the absence of a ma.n(t( “dimensional
Green 3 theorem use cirect integration by parts.

6. (@) On the basis of an expansion theorem completely analoge\ts to the theorem
given in &-6(d) give o formal proof of the asserted minimum cherscterization of the
Schradinger cigenvalues given in 11-4(d).  Hivr: Corapare 3-9(b), Note in particular
the condition which mnst be imposed on the “expanded 7 fq\ctlons at infinity.

(8} The validity of the expansion theorem mentiongéd\in part (a) may not obta.m
if the potentini-coergy function V is not sufficiently( well behaved. Inasmuch as ome
kas very often to deal with potential-energy fumhons in quantum mechanics whiech
eshibit singulurities (for example, (29) of 11-3(a) at r = 0), the question of the expan-
sion of arbitrury functions is an exceedingly Qifficult one—more so, for example, than
the corresponding question as related td' wibrating-membrane cigenfunctions. For
the problems considercd in the foregoiighchapter, however, therc is no question as to

the validity of the minimum propc){tv\ef the Schradinger olgenvalues
dett’as free (and not fixed, as in 11-3} the integral

7. (@) With the nucleus regé}
whose extremization results 'n_the Schrodinger equation for the hydrogen atom is,

sceording to (H1),
2

fffq_f {\K [l + 537 2M lVM” +(V - E)\&’} ‘1;[1 drs dy; des,  (96)
\"‘\} \ |Vi1,b|e = (az‘) (By‘) (az‘ = 1,2);

coordinates of electron and naeleus; m T’
the nucleas; and ¥ depends only on the

where

{(#,y1,21) and (xq,ys,z:) are respectively the
the electronic mass, and M is the mass of
distance

e
r = Ao —w g — y)t (@)

between the electron and the nucleus, Effect the transformation

® o= I — T ¥ =Y = Y 2 =g — 22 97}
T + ..*-:,M _ym + sz, 7 = am + i}M ©8)
S TmEM m+ M n +
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io bring {96) into the form

= ffffff {2——(,?112 73! |vati? + % gl + (V — E’W} dv dy dz dX 4V dZ, (99)

where
[Votfe = ¢k + ¢34 o5, [Teft = ¢ b vE 4o
snd
mM

S m M {100}

Hint: First show that the absolute value of the jacobian of the tr;uml'urma@on i
unity. Thenderive,, = ¥. + [m/(m + M)W, bx, = —do + M {m 4+ Mz, ete,
() Carry out the extremization of (99) to derive the Schrédinger caitation of the
£\
problem, Hixt: Use 9-1(}). A\ e
Show that an eigenfunction ¢ of this equation muay be written in j}llﬁ forin

.

¢ = (X, Y, 20 (z,y,2), "’T ’
&\
where ¢ satisfies the equaiion )
K3 )
oTm + 30 WEx ey + w‘&).\%%’ww =0 {101)

) 3

—the Hehridinger equation for a free {zefospatential-cnergy) purticle—and 0
satisfies the Schrodinger eguation for the hydrogen atom with stationary nueleus
(11-3}, but with m replaced by u. HIN:I"'.:UEE the fact that V depemds ouly on 2, v, 2;
compare 11-4{g}, &NV

{The variables X, ¥, Z, defined bi,r,' {98} are the coordinates of the ceater of mass of
the atom. The result (101) ma§\thus be interpreted that the atom as a whole is to
be considered, ¢n ils transiatigngl,motion, as a free particle located at its center of mass.
The final result of the er' ding paragraph justifies the parenthetic remark made at
the conelusion of 11-3(h). hat do the variables z, y, 2, defined in (07), represent?)

8. Give explicit justification for the final statement made in 11-4 (e}

9. Verify direct]y the fnet that ¢ of (T1) is normalized. (This is of course a very
simple spceial gensequence of exercise 3 above.)

10. Supposesthat a single (approximate) eigenfunction

N\ \
~'\’.: ) ¥ = H N (2, 0,2) (102)
- -t

4
%s been obtained for a given s-clectron atom by means of the liurtree method
{(11-5(c)); each ¢ is properly normalized. Let, further, B0, E® . E® be the
corresponding set of eigenvalues obtained by solving the equations (%43 Show that
the totul (approximate) energy of the atora which corresponds to (102) is given by

2 3 a
E = z E® — 3 z E ffffff V(g @)% da; dy; dz; daw dys dee {103)
t=1 k=17=1

Hm;r: Cgmparc (92_), wh.ose minimum is F, with {93), whose minimum is B,
What is the physical significance of the appearanee of the double sum in (103)7
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1. () Show thit  linenr homopencous transformation
3
r. = Z b,,-z:. T = 1,2,3J (104)
i=1

a eartesian syvstem (ey,7e,2;) 18 4 pure © 1 . .
from a eartestan =x s} A pure rotation of axes to s second such eartesian
systent (%,,2.,640 i wtud wnly if the six relations

i
4

by = b (7k = 1,2,3, indopendently) {1051,\
[ ’ \

hold,  Hint: Thie n-cessnry and sufficient condition that the transformation b ';}%e
rotation is thut {

k! 3

' 4 ’\‘
E 2= E 2 N os)
=1 i=1 'i\\,

for all values of the £ and ,r: Derive (105) direetly from (@ and (108),
(B) Use (10571 i show {hail the absolute value of the ]Pg'oh of the transformation
{104} is unity.  Hive: Use the rule for multiplying{i(e.t&éﬁmnts {2-8(c}} to form the

square of the Jucalian, AN\
W\
R
‘:s:}
&
AN
Ny
A
\
N
ne
A\
A\
AV
<\
A}
.\fgi



CHAPTER 12
ELECTROSTATICS

12-1. Laplace’s Equation, Capacity of a Condenser ~

{a) To say that there exists an electrostatic field in a gi\{en\ region of
space is equivalent to asserting the existence of a vector whobe’ cartesian
components E,, K, E. are, in general, functions of the pesition coordi-
nates %, y, z (but nof of the time ¢) such that a pointxé}‘iiﬁ'ge ¢ located at
(2,3,2) experiences a force whose eartesian componetits are G, QF, QE..
The vector (B.,E,E.) is called the electrostatic “itensity. The electro-
static fleld is conservative in the sense of 6-1 athat is, there exists a fune-
tion ¢(x,y,z) with continuous second partidl derivatives from which the
components of the electrostatie intensiﬁyfa}e derivable as

B.- -2 g ooVl 5 4 W

— — =N= J—

0% WY oy T 3
The function ¢, which is acttfaﬁlly the potential energy of a unit charge
(@ = 1), is ealled the elecirostatic potential function—or, simply, the
potential—of the field. .iﬁe component of the electrostatic intensity in
any given direction,js'the negative of the derivative of the potential taken
with respect to that Wirection.

For the sakenof simplicity we may define a metallic conduector—or,
briefly, a contlctor—as a body in which the electrostatic potential has
the same ¥alue at all points; in particular the surface of a conduetor in
an electtostatic field is characterized by a constant potential. (From (1)
it thuifollows that the electrostatic intensity is everywhere zero in the
im;f:rror of & conductor and has a zero componont in every direction tan-

rtial to the surface of a conductor.)

We consider the three-dimensional region R which is exterior to a given
number of isolated fixed conductors and interior to & single elosed con-
dueting surface; the region R is unoccupied. Owing to the assumed
presence of an electric charge on at least one of the condueting surfaces
the region R constitutes an electrostatic field. The potential energy per
unit volume assoeiated with such an electrostatic field is given' by the

! A demonstration of this result is far beyond our present scope. See, for example,

Max Abraham and Richarg Becker, “The Classical Theory of Electricity and Magne-
tism,” pp. 81-84, Blackie & Bon, Ltd., Glasgow, 1932,

294
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expression (1;’”8_3') (E:+ E; + E). Integrating this guantity over the
region B occupied by the field, we obtain, with the aid of (1), the total
potential encrgy of the ficld—namely,

TG e

This field potential energy-—not to be confused with the potential fune-
tion ¢ = ¢, y.2)—represents the amount of mechanical work which
would be required in order to bring the electric charges which give s\
to the electrostatic field from infinitely great mutual distances to sheir
setual distributions en the conduetor surfaces. R\ N

The prineiple which characterizes a system in stable 'equi}:ibrium a8
possessing a minimum of potential energy consistent with it§ ¢onstraints
applies to an cleetrostatic field as well as to a mechanical(system. We
may thus expect to derive the differential equation satified by the poten-
tial function by rendering the integral (2) a min{mujn with respect to
continuously differentiable funetions ¢ which get;skess a prescribed eon-
stant value on each of the condueting suxfiees which constitute the
boundary B of B. The boundary condji;iéf; or the functions ¢ eligible
for the minimization of (2) springs fromi‘the definition above of a eon-
ductor; thus a different constant valile is in general assumed on each
isolated conductor. \\

To extremize (2) we may empploy the general Euler-Lagrange equation
{9) of 9-1(a), with w = ¢ ard}

S\
N T =+ ¢t e

We thus obtain for the extremizing function ¢—namely, the. actual p?ten—
tial function of 't}ge\électmstatie field—the partial differential equation

’.:§éx3 -+ ¢UN + ¢z = D; of Vg‘ﬁ = 0. (3)

The Bqlizﬁ:ién (3)—so-called Laplace’s equation—finds é}pplicf_iblhty ’UOt
only tm flectrostatic theory but also in the studies of c}as.swEﬂ (Newtonian)
gravitation, hydrodynamics, heat flow, and other physical phenomena.
In exercise 1(z) at the end of this chapter a I?roof that the ¢ whick
extremizes (2) is actually a mingmizing function 18 called for. Furt_her,
in exercise 2(b) it is proved that the solution of (3) under the given
boundary conditions is uniquely determined. (Adequate hlnffs are pro;
vided in each case.) The question of the existence of the minimum o

. artisl differentiation
! From this point forward we employ subscripts to denote partial differ '

48 in preceding chapters—but ot in (1) above!
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(2) 1s discussed in 12-4 below; we make the generally valid assumption
of its existence.

(6} The problem of finding the solution of Laplace’s equation (3)in 3
given region R, with ¢ required to sssume specific values on the boundary
surface B of R, is called the Dirichlet problem for B.  The solution of the
Dirichlet problem in closed analytical form has been accomplished in
several cases; these are discussed adequately in the literature on potential
theory." We direct our attention, rather, to the possibility of effecting
approximate solutions through the direct minimization of the in}egral
{2) for cases in which a solution in closed form cannot bo achi,e\rgd. One
general method of such approximation is completely analogfbus to the
Ritz method as applied in 7-6, 9-13, 10-10, 11-5, ete.: A olads of functions
¢ 15 defined by the various sets of values of a finite numAber of parameters
borne by a single analytical expression which assumés ‘the required values
on B for all values of the paramcters. The parameter-laden cxpression is
substituted for 4 in the integrand of (2), and the minimum of W with
respect to the parameters is effected. T 1'r_\.\minimizing values of the
parameters thus define that function ofMhe' given class which gives the
“best””—in the sense of rendering W the8mallest—approsimation to the
actual potential.

The method described in the pieceding paragraph is in general quite
laborious in its execution. Justification for the amount of labor required
can of course lie only in theldegree of urgency atfached to the (approxi-
mate} solution of any givén'problem. For the purpose of illustration we
carry out the method for'a problem of nontypteal simplicity—-ene in which
the procedure leads {Us directly to the known precise solution:

We choose fonghie region B the exterior of a given sphere of radius b;
the outer boundary of B may be considered to be “a sphere of infinite

~radius cox@tf“ltﬁc with the given sphere.” We set up a system of spheri-
cal ecoordifates? (r,0,y) with origin at the center of the sphere. The class
of fuqetibns with respect to which we choose to minimize (2) is defined by
thogidgle parameter p in

¢ = ¢ (g) (p < 0, @

where ¢, is the potential on the sphere and the “potential at infinity” is
taken to be zero.

In spherical coordinates (2) reads, on substitution of (4) with the aid
of (36} of 11-3(a),

! Bee, for example, Kellogg.

* Because of the use of ¢ for the potentisl function, we substitute the symbol ¢ for
the usual & as third spherieal eoordinate.
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;= ID_}tbf A 2p—82 ot
W= SW!'JL’J"/; _/(;[0 reTE sIn 0 dy dg dr (p < 0)
proib 1 ( _
BT o 2het9p — 1
a2p 4+ 1) T 78U\ Hfﬁi)‘
Ta minimize 1 we form ’
AW _ _l \ B 1
dp 4 bei (] (2ﬂ_1)2) =0,
"\

whenee p = 0, — 1. Since (@*W/dp*) > 0forp = ~1, W is & minimud:
for this value of the parameter, and the best approximation to thegoton-
tial, as supplied by (4), is O

D,

b RO
¢ = ¢ (;) ,\\ )

(We must reject the solution p = 0 in advanee beeawde of the necessary
requirement p < 0.} It happens that (5) agtila v satisfies Laplace’s
equation (see end-chapter exercise 3(e)) asowell s the given boundary
conditions und is thus the precise solution{df the problem.

{£} We devote the remainder of this';section to the consideration of
regions R of the type which lie exjtgiribr to a single given closed con-
ducting surface B, and interior tg second given closed conducting sur-
face By; the two conductors ap€'then said to constitute a condenser. The
essential quantity associatethwith a condenser is its capacity, which is
defined by the formula %\~

022t | @+ataman 0
P LT )
:n\.:'
where ¢ issﬁ%"constant potential on Bi, ¢: the constant potential on By,
and ¢ ifq?(:t:,y,z) the potential in the intervening region R,

Im«fle\w of the minimizing character of the potential function enunei-
ated\isl (@) ubove, and since the integral in (6) coincides with that in (2),
an equivalent definition of the eapacity of a condenser is the minsmum of
(6) with respect to continuously differentiable functions which satisfy
$ = dyon By, ¢ = ¢;on Be. The merit of this minimum definition lies,
of course, in its usefulness for the approximation of the capacity of &
given condenser along the lines sketched in (b) above. Moreover, there
exists a method of approximation which is far more elegant and, at lea:&t
in some cases, simpler in its application than the direct method of (b)
which the integral of (6) is minimized with respect to a finite set of
parameters.  We proeeed to develop this method.
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We suppose that B; and B are members of the one-parameter family
of closed surfaces u(z,y,2) = A (1 £ 4 £ us), with w@y,2) =y on B,
and u(z,y,2) = u, on By, Further, we restrict the continuously differ.
entiable function u#(z,,2) to be such that through each point of B there
passes one and only one surface u(x,y,2) = 4 lying entirely within R,
with the values of the parameter A 50 ordered that the surface u = 4, js
everywhere interior to the region bounded hy the surface w — A when-
ever A; < A, (See Fig. 12-1 for a plane scction of B. Discussion of
the existence of the required function u(x,y,2) when B, and B, are given

uln,yz)=A Pl A

Fia. 12-1, \ O

is reserved for exercise 5(d) at the end of bhis chapter.) Wae seek to mini-
mize (6) with respect to functions fg‘high"cxhibit the special form
¢ =G, withBlu) = ¢, Glus) = 4. @
From (7) it, follows that P N
2 = Gug (N ey = Foou, g = 6w,

where the prime (') ‘il}d\l}tél.tes differentiation with respect to the argu--
ment 4. Thus, on gubstitution of (7), the integral of (6) (which we scek
to minimize through’ proper choice of the funetion @) becomes

! =f!f (‘fif\\ﬂtﬁf‘ﬁ?; bo)dz dy dz = ]J 16l + w2+ ud)de dy dz. (8)

We pl:(\ab,éed to reduce (8) to a simple Integral over the variable u.

W,?ih troduce the two continuously differentiable functions v {z,y,2) and
w{d,z} such that through every point of R there passes one and only one
surface »(2,4,2) = constant and one and only one surface w(z,y,2) = col-
stant for some pair of ranges of values v, < v < 9, and w S w = W
Thus we have in (uv,u) a coordinate system related to the cartesian
system by the transformation equations

“EuEe, v =iy, w = wye); ©)
the inverse transformation is obtained by solving the system (9) for «,7,2.

T = z(upw), ¥ = yluyw), z = z{mrw). (10)
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The numbers py,¥sWi,W: are so chosen that to every (wpuw), with
L SuS Uy S <y, w1 S W S Wy, there corresponds a single point
A B (An example of a suitable assignment of s and w is given in {d)
pelow, where the method under developmeni is applied to a specific

problem. )
Using (10}, we transform (8) to read

szfffwwwwwawﬁ+@

S L

a(z,1,2)

W dw dv d%, {11}

according 1o the rule given in 2-8(f); the jacobian [8(2,y,2)/8(uv,w)] and
(? 4 ul 4wl are supposed expressed in terms of! {up,w). Since'the

factor [ (1))? is independent of v and w, we may define £\
v e 6(33 y Z) ¢ s.:’(‘
0y = 2 2 2 l adLihil > 1
() Lﬁgm+m+mmmm@ﬁ. (12)
and so rewrite (11) as the simple integral O !
A '
7= j’ @ @IHwaN (13)

Thus the problem of minimizing I with, respect to functions ¢ having
the form (7} is reduced to the probll}m:'bf minimizing the simple i.nt-egri.ﬂ
(13) with respeet to functions @ gf‘;;fs‘ihgle variable, ‘To accomplish this
we may apply the result (26)0of '3-4(a)—first integral of .the Euler-
Lagrange equation (23) of 3133'(]}) in the event the integrand f 18 exp}lc1t1y
independent of the dependent variable G—to the integrand f = G H of
(18). We thus obtain()

¢/ ¥ du
G”I{= ey, or G{u) = & j;“ ﬂ%ﬁ +- 61y (14)
PR+ -
where ¢, and»'é}za:re constants. (In exerclses 2 and 3, C'ﬁhfl-p: 3, it is shoﬁn
that the extremizing function given by (14) actually mansmeees (13}.) . 0
evaluaﬁé.(\:’l and e, we employ the second and third relations of {7) and so

obtaiArom {14}
b — 1 (15)
—_ -
= du O f “ g/ H W)

1

Thus, according to the first of (14) and the second of (15), we have

B T (T Sk Vi
HG"? =§—{ = q [L‘id‘l&/;(u)]z

1

t 8ee end-chapter exercise 6().
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so that (8) becomes, with the aid of (13) and {8), the approzimate capacity

2 C, (16}

where C, is the acfual capacity (the minimum of (6} with respect o ¢)
of the condenser under consideration.

Under exercise 6(¢) at the end of this chapter it is shown that the fune-

tion H(u) given by (12) is independent of the choice of functions v and w
in {9) and (10). Thus the possibility of improving the approxitation
given in (18) through a ‘““better’ choice of #(z,y,2) and w(z,; ,g)\‘dpes not
exist. ~\
The only possibie way to decrease the difference (€ ’—”‘Cﬁ)ﬂif it does
not already vanish—is by means of & more suitable ful‘}r:fl't)ll u(z,y,2) In
terms of which the surfaces B; and B are represeutced. [n fact if the
family of surfaces u(z,y,2) = constant happens toube identical with the
family of surfaces ¢o{x,y,2} = constant (wherg @p is the actual potential
in B}, it is directly seen that the approxim.a’{ion {16) is perfect; that s,
¢ = Co. For with such a choice of u there is a one-to-one! functional
relationship between ¢, and w; thus the function G(x) is some function
F{¢q); the minimum of (6} with rquée’t to ¢ = G{u) = F(po) s clearly
achieved for F = ¢,. From thigifact it follows that the metbod of this
subsection may be used to solve“the following condenser problem: Given
any onc-parameter represenfation of the equipotential surfaces (surfaces
on which the potential i&to‘nstant), find the potential funection itself.

The main limitatiens“of the method of the preceding paragraphs lie,
first, in the possiblendificulty of finding a sufficiently simple function
u{z,y,2); and, second, once the choice of u(x,y,2) is made, the possible
failure of the iutegral (12) for H(u) to be evaluable in explicit form, In
the specifisexample of (d) below, however, neither of these difficulties
prevailg, \ '

In:f@—? below we consider a second method for approximaiing the
capagity of a condenser—a method which results in a lower bound for
the¥eapacity, We are thus enabled to estimate the accuracy of any
approximation from above achieved by the methods of this section.

(d) The remainder of this section is devoted to applying the method of
(c) above to the approximation of the capacity of the condenser formed
by the similar ellipsoids of revolution described by the surfaces % =
and u = 4, (0 < w1 < uy), where

u = A2 + i I ol { > 0). (17

* Bee end-chapter exercise 5(d} for a fuller diseussion of this point.
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{If « < 1, we deal with prolate spheroids; if & > 1, we have oblate
spheroids.)  In the special case o = 1, the surfaces u = %, and u =
are concentric spheres with their centers at the origin of coordinates and
wis the distance from the origin.  In this case we should almost certainly
choose for the funetions v,w (see {9) and (10) of (¢} above) the spherical
coordinates usually denoted by 8, ¢.  That is, (10) would read

7 = usinvcosw, y =usinvsinw, 2z=wucosv (e=1). (18}

Since passing from a = 1 to « # 1 in (17) means replacing z by oz, ave

should expect to obtain a suitable ehoice of the functions v and, w\by
replacing z by az in (18)-—namely, ¢\
PR

x = u sin » cos W, y =y sin v sin w, z= ;ggs“i:. (19}

We note, first, that (17) is satisfled by {19). I*‘ur,trh}rf it is clear that

each point of R is associated, through (19), with one¥nd only one triple

of values (w,r,w), with 0,:\\:

i Eutu 0SvEmO0Sw<m (20)

(Proof of this fact is called for in exercige "0 at the end of this chapter.)

From (17) we compute directly &8~

a e 1.2
DAV L ity tateostn @
AV T

ul 4wl o+ u =

according to (19). Fré\ﬁ\ (19) we compute the jacobian

A . 1
M2 ¥sin v cos w gin ¢ sin w acosz:
»ed , T
a(a?,y:v'j9~ — |wcospcosw weEOSYSIMUW T g sin v
3u,u,%0) _
N —ysinpginw wusinycoSw 0
.0\’0 2
\d LA 922
T\ = —gnun (22)
\ 4 o

With (21) and (22) the equation (12) of (¢) above becomes, with the aid

of (20),

x f2x 4x
H{u) = %2 j‘; ]; (sin?v + o cos? ) sin v dw dy. =7 2+ af)u?, (23)

from which we compute

“du ___3_5!__,(}_ - l). 4
j;l Hwy ~ W@+ o)\ ¥
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Substituting (24) into (14) and (15) of {(¢) above, we obtain for the
approximate potential function

$: —~ & ("i’i“.!) 4 Mt = Wy

WU — Y1 " e — My

b =Gu) = — (25)

Substituting (24), with u = u», Into (16) above, we obtain for the approxi-
mate capacity of the condenser under consideration

c - 2 + a’g( ul’u? ) g Cﬂ, ’*26)

Je Hy — Uy

where (% is the precise capacity. We note, on comparisof NGith the
results of end-chapter exercise 8, that both (25) and (2(;) “eive preeise
results in the case @ = 1—for the condenser consistiig of concentric
spheres, that is, according to {17). We should thickefore expect the
method to give its most reliable results in this problem when « is in the
neighborhood of unity; this fact is borne out in 12+2 below, where a lower
bound for the capacity of the ellipsoidal con énser is derived.

(e} The capacity of a single conductinggurface is defined as the limit
of the capacity of the condenser, of whjéh'the given surface 13 the inner
conductor, as the outer conductor regédes to infinity in all directions.
In the case of the ellipsoid u =~u’1~' of {d) above we obtain the approxi-
mation ' to its capacity Cy by letting us — « in (26)—mnamely,

G"\; 2 + QE
\\ 3

If we write the equafion of the ellipsoid « = w«, in the familiar form
A

w = O @7)

p a4yt 2
o4 T te=h 28)
we have, ig’i'(}:ording to (17), us = b and « = (b/a), so that (27) reads
~O , _ 2a% 4 b? @ ,

L -3l — (*/a?)]

In exercise 10 we compare (29) with the formula, giving Cj precisely for
the ellipsoid (28} in the case @ > b.

12-2. Approximation of the Capacity from Below (Relaxed Boundary
Conditions)

_{a) The minimum of the expression (6) of 12-1(c) with respect to con-
tinuousty differentiable functions ¢ for which ¢ = ¢, on B, and ¢ = 2
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on By is by definition the capacity of the condenser whose inner (B
guod outer (Ba) conducting surfaces bound the region . We proceed to
demonstrate that the eapacity may be defined equivalently as the maxi-
mum of (6) with respect to functions which (i) satisfy Laplace’s equation
and (i) satisfy a ‘‘relaxed”” boundary condition expressed in (34) below,

We suppose that ¢ is the actual potential in the region B bounded by
B,, on which the constant potential is ¢1, and B, on which the constant
potential is ¢2.  That is, we have

vig = 0in R, & =deonBilk=12). - (30)
Thus the actual capacity Co of the condenser under attention is
O\
i . o\ T
Cp = —————— 2 2 Nz dy dz., \ 31
" dn(ee — 9)F fnff (6 + ¢y + el dy AN\ e
We write \: '
¢ =y + Q, Q (32)
where the function ¢ = ¢(z,y,2) satisfies Laplape{s}:quation—namely,
v =0 BN . (33)
—and the relaxed boundary condjtion’ \
g (39
f (¢ Q:‘{i)%ds 0.

B ~

{The function § merely represents the difference between ¢ and ¥ as

defined.) The surface itegral which appears in (34) is carried out over
the boundary B of R>-that is, over the fwo surfaces B_l and Bn-_ The
derivative (8y./on)i6/computed with respect &0 the normal to B directed
outward from RO\

(The boundsry condition (34) is called “relaxed” in that it is less

stringent $han the boundary conditions imposed upon the furfctsonsﬁ
eligiblga,@f‘the minimization of (8). That is, any function ¥ which lsa.mls-
fre ’th;f—‘”fatter conditions—namely, ¥ = ¢1 0D By, v = 42 0% Bt GEFY
satidfies (34), because of (30); on the other ha,nd.vffe gee below ths_ttht ;ie
exist functions y which do not satisfy these conditions but for which { )
holds.)

We substitute (32) into (31):

(s ~ ¢1)2(% o )
- gf Wi+ v+ ¥idedyde F Lf (@ + @+ Qde dy

42 [[] Qo+ 90y + #QIE A )
R
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According to Green’s theorem. (30) of 2-14 we have

f f f Qs + %@y + ¥:Q:)de dy de

foandS fff@vngdxd?;dz_o (36)

because of {34), with (32), and (33). Since the second infegral on the
right of {35} cannot be negative, it follows from (35) and (36) that\

N

Co2 qu )2 ff Wi+ ‘by + 3z dy dz "\..'\ (87)

Since the equality sign holds in (37) if ¢ = ¢ and smce v,l» ¢ satisfies
both (33) and (34}, because of (30), we are JUSm}ed in defining the
capacity Cy as the maximum of the right-hand\member of (37} with
respect to functions ¥ which satisfy both (339’.‘&&{1 (34).

The difference between the two members'of (37) is, according to (35)
and (36), proportional to the posn;we quantlty

f—fk[f (Q"%—“@2+Q)dmdudﬂ (38)

where @ i given by (32). \’1he smaller the value of (38), therefore, the
better is the approxim tion to C, which we achieve through the right-
hand member of (37) KWe proceed to show that, if we write ¢ as &
linear comblnatmn \/

\ N
42 2 W =06 =12 ... ,M] (39)

of N, glven functlons Uiz,y,2) which individually satisfy Laplace’s equa-
t\;rythe set of values of ay, @5, . . . , ay for which (38) is a minimum
set for which ¢ satisfies the relaxed boundary condition (34).
With (32) and (39) we substitute

N
Q=109 ~ a:, (40)

1'21
For (38) to be & minimum with respect to @y, @2, . . . , Gy We ‘must have
(8I/6a) = Ofork = 1,2, ,N. (Since I = 0, the minimum surely

exists Inasmuch as 7 iz continuous function of the ar.) From (38) we
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have

ol _ 0. 3Q, 20,
L= 2]}](0: Ja, + Q a_ak + Qs'éa)dxdydz
i

i
_ ., [[[(%@aUs , 9@aU, , eqau,
= Zfﬂff(ax EP +@_B? a—a)dxdydz, (41)

aswe find by performing the requisite differentiations in (40). With the
aid of Green’s theorem (30} of 2-14, equation (41) becomes N

1 af el KO\
Eau'k = ffovﬁdexdydz—[an—?SdS 2\
i B %

Ny
P

N .

; Ty ys (D
St (DS
B

im]

because of the bracketed portion of (39) and (.40}} The required vanish-
ing of all the (21/day) for the minimum of Jthus gives the set of N linear
inhomogencous equations O’

S
AN e

X A B
f 62Uk iy — Za,- [/ g0 —0 k=12,....8 @
an _dm
1= I 4

B

for the best choice of the a“:’\That this choice also renders (34} .sa.tisﬁed

by (39) is shown bysmultiplying the kth equation of (42) by ax, for

k=1,2, ... N,shd by adding the resulting N equations o obtain
MK

¥

L\r

RCHRENRES

]

this is {dentical with (34 , through (39). .

T‘hu\s,“ in order to a(ehizave a lo%ver bound for the capacity Co by meaéls
of (37) we form the linear combination (39) where Ux U - - 'h ‘
are given functions known to satisfy Laplace’s equation e W:ZEG
@, a5 . .., ay are obtained through solution Of. the syzt,em E‘oxi..
Moreover, we can expect, in general, to have an Lprove g;plierms
mation to €, in the right-hand member of (37) by addml;g ;n the differ-
to the linear combination (39). For since (42) ensures y at the class
ence between the members of (37) ie & minimum with r.espec:h ;widening
of funetions defined by (39), with Uy, Us, - - - » Uy given,
of this class cannot jncrease the minimum achieved.
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In applying the foregoing method to a given condenser, we note that
each surface integral of (42) is the sum of two surface integrals, one
carried out over By, with ¢ = ¢, and the other carried out over B,
with ¢ = oo,

(b) We apply the method of (a) above to the condenser of 12-1(d),
consisting of concentric coaxial similar ellipsoids of revolution deseribeq
by the equations & = w; and u = uy (0 < %, < a2}, with

u - Vil g T ai? (e > 0). “\(43)

In the case @ = 1—whereby the econdenser consists of concentq-:if} spheri-
eal surfaces—the preeise potential is given by 4 :\

el
27N
S

253 N
=‘_'__—‘—'_.__“——._+a, e,
RV R ~A

where a; and a; are constants selected so as to fit the boundary conditions
{see end-chapter exercise 8). We may thug :e\xpect to achieve & good
approximation to the capacity C, at least¥m) the neighborhood of & = 1,
by the choice O
PN\ 1
¥ =al, ‘I:j‘,lf:'z- \/;W
for the linear combination (39). With (44) the result (42) becomes a
single equation “'hiehf-\\rher}solx'ed for @) and with the surface integral
over B split into its cO:Qpijnent parts—-reads, since ¢ = ¢, on B, and
¢ = ¢z 0n By,

(44)

. i«:'5_';.‘%{5&:;T,rl/a;»a)aﬂrs + s Bf[ (OU/n)ds ) ;; 6ot
,;:'\ff Ui@U,/9n)dS + ff Us(aU,/on)ds Z N
A ", Y 2

where,\)
= f W g aU,
Jp = _/]T?}a_ldé’ Ly = [/ T, anldb (k= 12). (46)
b 5

To_ evaluat:e the integrals (46) we use as coordinates on the surface Be
the variables v, w introduced in ( 19) of 12-1(d); thus, for points of the
Surfa-ce u = uk, we have E : #

v {45)

T = % 8in v cos w, ¥ = w sin v gin w, 2= coap (k = 1,2),
24

DZ2vsxr0=w<2e (A7)
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According to 2-11(b) the element of surface area on By is given b
by..

a8 = /(72 + 0l + 2@k + ol + 22) — (mr. + + 2.20)% dv
2Fr . r w w w Leliag v %
LI ey 2 T y'y " ') o
S Vst + a® cos® v sin ¢ dv dw (k=12), (48

a3 We com‘pute with the aid of (47). To express the normal derivati

(@U./8n) 1n terms of ¢ and w we first note that the oufwe d anvatwe
11_0rmal d.ir(-.ct.i(m is in the direction of decreasing « on B, and ;n throg?re k)
tion of increastng u on By, according to (43). Thus, in appl e direc-
result (19) of 2-11(¢) we write , 1N appiying tl}s

_dtl = {(—1)* (Usyaut: + (U, + (1) :u, ,\:\
Z Vi T u T oM
oy Evrer o
\/x”+y2+a*z*(:c*-|—y2-|-« :
( l)k'Ha }
uf +/sin? v + o cos? v (o Bin? ") W cos v)i 49

?131 we find \\,'it-_h the use of (43) and {44}, then- Mth the aid of (47}, With
he results (18) and (49), and with (47) appluad to (44), the integrals (46)

become R
P N
— 1)ht+ig? sm~v “dw dv “
(Y [ f {a® (%in? v + cos® v)F (k = 1,2),
Lo = {—1 k+1 { M _
o L (o min? v + cost )™ (k = 1,2).

ed by elementary methods, In
he factor 2x; the substitu-

dard algebraic forms. We

- Evaluation of Jy and Ly is accomplish

both cases integration over w merely yields t
tion £ = cos v res{mces hoth integrands to stan
obtain, finally¥’™\*

™\ —
R EPE I %E%F(a), (50)
QY :/'3_01?11‘3‘_2+a 0 < a <)
—
' (@ = L, (51)

Fla) = {2
log(a—l-\/a — 1) _M ' (a>1)-.

N .
With (50) equation (45) becomes )
21— 99 . S 6y

o (33

a =
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Substituting (44) into the right-hand member of (37), we obtain
af foz Uz + (U)2dz dy de
02 ppito ’f (D02 + (U} + (U2hde dy de,

or, on applying Green’s theorem (30) of 2-14 plus the fact that v217, = 0,

Gf a_Lil — a? L 2 -
®2 5t —"Eoz_/f Don B = gt e (Bt L), 69
H

according to the second definition of (46). With (50) api(52) the
inequality (53)—our final result—reads O

N

NS

2 Wilo “.f 3
02 pig (25) & A

\\
where F(a) is given by (51). \ .

Combining (54) with the result (26) of lQ:l’@j'for the condenser under
eonsideration, we obtain the double ineqqa,lx}tjf

2Ehat( wa N o o” 2w 5
3(1 (ug - RI) “_::Z('?Pnz F(Q) (?{3 - ?.61) (5 )

For @ = 1 the upper and lower:! boimds are equal, according to (51), to
the precise expression for theleoncentric spherieal condenser.

o\
1.5 AW
N\
¢ 2+a?
O; — S
A
o\ 1.0
O\
" s’\\“ 2 \
o\ Fla
N\ 0.5
N\ 0.5 1.0 15 2.0
\ Fia. 12.2.

Figure 12-2 exhibits the behavior of the numerical coefficients of

{116/ (42 — %)] in the upper and lower approximations which appear in
(55), for the range 0.5 £ o < 2.0,

12-3. Remarks on Problems in Two Dimensiong

(@) An important clase of problems in electrostaties is characterized
by thg fact that the potential function ¢ ig independent of one of the
cartesian coordinates—which, for the sake of definiteness, we designate
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a3 7. In geometric terms the conducting surfaces which bound the
clectrostatic field are cylindrical with generators parallel to the z axis.
Thus every plane z = constant contains the same cross-sectional con-
figuration of thesc surfaces, so that we may confine our attention to a
single such pianc—say 2z = 0. Thus, in describing the conducting sur-
faces, we speak of them as curves—their eross sections—in the zy plane.
A right-cirenlnr evlinder of radius @ whose axis is the # axis, for example,
is thus spoken of as the cirele 2 4 y? = a?in the zy plane. The region R
hounded by two eylindrical surfaces thus becomes the domain D in the
zy plane bounded by two curves—the cross sections of the surfaces; €te.

The physteal realization of a situation in which ¢ is independentsof.2 is
gt best approximate; the mathematical results achieved are aliiili::-’able
to cases in which the fields are bounded by cylindrical surfages cut off
by parallel planes separated by distances which are greaf ¢otpared with
the eross-sectional dimensions of the field, and only atbints between,
but distant from, these planes.

Two-dimensional problems in potential theory ate most easily handled
by the methods of the theory of functions of @omplex variable, Never-
theless, the techuiques introduced in the tio' preceding sections of this
chapter are also of some use, particularly.for the approximation of solu-
tions which arc unattainable in preciséiform. In this section we indicate
the lines aloug which these technigues may be applied to two-dimensional
problems. Many of the deta“ils,r 5 well as applications, are left for the
exercises at the end of this ¢hapter.

(®) The capacity per amil length of a cylin
the inner curve a.r;d\t e outer curve (s

may be defined as the/minimum of
AKX

y \’..' 3 i f/ (¢2 _I__ ¢2)dx dy (56)
Ve \ 3 ] ]
\“' ir(d: — &1) /s

QO
with regpett to continuously differentiable functions ¢ for which ¢ = ¢é:

onCiwhd ¢ = & on Cs  In end-chapter exercige 1(b) it is I?roved that
7 lace equation

the Minimizing ¢ satisfies the two-dimensional Lap

(b:: ‘l" ¢W = 0, or V2¢ = 0.
n above) the minimum of (56)—

drical condenser consisting of
which bound the domain D

(57)

The techniques for approximating (fro . i

i 1
and thus approximating the solution of (57)—are 935613;1:11}1; t)dfe:;;ﬁ—
with those discussed in 12-1(b,c,d) above; It general the detal

cation to two-di i blems are somewhat simpler. )
o two-dimensional pro e capacity per unit jength

Analogously to 12-2(a) we may also defi N with
of the condenser of the preceding paragraph as the mazemum of (56)
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respect to functions ¢ which satisfy (57) and the “relaxed” boundary
condition :

. Ll (1 — ¢) '6% ds + _[c: (¢ — &) n ds = 0.- (58)

The proof is called for in end-chapter exercise 13(a).

(¢} We may develop the minimum definition of the capacity per unit
length of (b) above along the line of 12-1{c}. With the dotailg left for
end-chapter exercise 14{a) we arrive at the result A~

1

— 2 g, Oy (59
dr [ du/niu) 2 ®

: N

" where ¢y 18 the actual capacity per unit length of the pqlide‘r'lscr bounded
by the curves Cy and €, which are members of the fandily of closed curves
u(2,y) = a, with ¥ = u; on C; and w = u, on Cp\The funciion u{z,y)
is such that u{zy) = lies entirely within:.@e domain bounded by
u(x,y) = a» whenever u; £ a; < a3 < ua. Ihe function k(u) is defined
by the integral \Y;

bW = f " 1) %E'% do, (60)

where v is a continuously diﬁq;eﬁﬁable funetion of position in D which
varies monotonically from », {o Pz &8 ANy curve ¥ = constant istraversed
exactly once (v, < vy). (N

L™

12-4. The Existencg 0f Minima of the Dirichlet Integral
In the foregoinghsedtions of this chapter we have occasion to consider

the so-called D"i\r}}s}'ilet integral

al

N @i+ 6+ evarayas, (61)
B

N\"

whésetiinima with respect to certain classes of functions ¢ characterize
the solutions of problems in free-space electrostatics. It is assumed
throughout that the required minima actually exist. Similarly, much
of the work of the preceding chapters is intimately connected with the
tacitly assumed existence of certaln minima of integrals very closely
related to (61), in one, two, and three dimensions. Although it would
carry us far beyond the scope of our study to go into the question of the
existence of the stated minima with any degree of thoroughness, certain
facts coneerning this question should be recognized.

- Clearly, the integral (61) possesses a lower bound: 7 can never be
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negative. It therefore seems plausible to suppose that there exists one
from among the functions eligible for the minimization which bestows
gpon [ a value less than (or equal to) any value which any other eligible
function gives to /. The plausibility of this supposition is strengthened
by the well-known 1 heorem for continuous funetions: In a closed region
4 continuous funetion actually assumes its minimum value for some set
of values of the independent variables. A further argument supporting
the existence of 1 minimum of [ with respect 1o a given clags of functions
¢ rests upon physical considerations: “Since the solution of the corres-
ponding phy=ical problem must exist, so also must the solution of the

N

minimum problem.” A\
The foregoing line of argument, widely referred to as Dirichlet’Sprinci
ple, dominated mathematieal thinking around the middie of ‘the nine-
teenth century and was actually responsible for a large bodjf ofsignificant
discoverics.  With his enormous eritical faculty brought, fo bear upon the
question, however, Welerstrass found Dirichlet’s prirlcii)le unreliable and
in 1870 produeed an example which conclusively{iemonstmted the princi-
ple to be false in the form in which it wos uridérstood af that date. As o
natural result of this discovery, relianceupon Dirichlet’s principle was
abandoned, and many of its consequences—in particular, many impor-
tant theorerus on the existence of '801]'.113{0113 of boundary-value pmble?ns
related to partial differential egtiaﬁons—-were aceordingly viewed with
serious doubt. A~ .
The effcet, of Weierstrags’s, hegative discovery had significant positive
aspects as well.  With { "céllapse of one of their stanchest pillarslmathe—
maticians labored harth, and in large measure successfully., to Pr‘{"ld_e sub-
stitute foundationdfor the consequences of the diseredited lp_l’lnﬂlple of
Dirichlet. Dutothé discredit was only temporary; i 1899 Hilbert estab-
lished an uugSshilable basis for Dirichlet’s priﬂﬁiplw??der proper con-
ditions sat:&é‘)b& by the region R and by the functions ¢ admitied fo ghg’abzhtﬁ
Jor the 'ﬂi{f;%imization. We do not discuss here what these condltmi?s are;
what,' is) significant to the scope of our study is the fact that t:heu:,non-
saflsfaction is associated with problems of distinetly i‘p?*tb‘}]ogmfa‘? cas’t
—problems whose main interest lies in their contradiction of Dirichlet’s

principle as i¢ was understood prior o 1899.

EXERCISES . .bl

L {(a) In (2) of 12-1(a) write ¢ = o + o, where ¢ ja continuously differentiable,
: 62

V2, = 0in K, :ﬁ=00nB, : (62)

example, 10 Kelloge, Chap- 11, and

U For full discussion the reader is directed, for
Courant {1).
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and so prove that W z W, where W is the value of W when ¢ = 0 (¢ = gg), Thus,
gince ¢ exhibits the same boundary valuez ss does ¢y, we have the required proof
that the function which extremizes (2)—and thus, according to (3), satisfies Laplace's
equation—also renders {2) a mintmum with respect to functions ¢ which assume the
requisite values on B. Hint: Transform the integral which involves both ¢, and ¢
according to Creen’s theorem (30) of 2-14(¢). Show that this intogral vanishes
because of (62).

{5) Use the method of part {g) to demonstrate the analogous two-dimensional
result stated at the opening of 12-3(b).

2. {a) Use Green’s theorem {30) of 2-14 to show that a function y which satisfieg
Laplace's equation in B and A\

B o .
g‘{'ﬁﬁds =0 ¢

'\
where B is the boundary surface of I, is necessarily & constant. 'I,f‘;‘ ft}rther, ¥ =0
anywhere on B, it thus follows that ¢ = 0 identically in R. A\, 3

(b} Use part {g) to prove that v*¢ = Oir R, with ¢ prcscg‘il{cii’ cverywhere on B,
iz sufficient to determine ¢ uniquely, Hint: Assume the'fwo) solutions ¢ = ¢, and
$ = ¢z, 80 that, with ¢ = ¢; — ¢, wehaveVy = 0in R = 0on B.

8. (a} Prove that the function ¢ given in (5} nctuallyvantisfies V¢ = 0. Hinr:
Hither use r = (27 + y? 4 20} with the cartesian fqr;fi of Laplaece’s equation or, more
direetly, use the polar form of the laplacian founddMin29) of 9-2(c).

{b) Use the definitions given at the opening, ohi2-1(c} and 12-1{e) to compute the
capacity of the sphere considered in 12-1(h). DANsWER; b.

4. {(a) Use Green’s theorem (31) of 2-1.4:té»p'rove that

(63)

Fig. 12-3,

{J] .Let Vi¢ = 0in R; ¢ iz not identically constant in R, Use (63) to prove that
?-here Is no subregion &' of B, which has s finite {nonzero) volume less than that of B,
in which ¢ is evnstant throughout, Proop: Let the closed surface B, which lies
entirely in R, be the }3011nds.ry of the Jurgest conneeted subregion R’ in which ¢ assumes
the coustant value ¢i. B’ may eoincide with part, but not ali, of the boundary B of B
since ¢ is by hypothesis not constant throughout R, Tt is thus possible to construct
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a sphers § which lies entirely within B and whose center is at some point of B’, with
radius so small as to exclude from ¢ every point of R exterior to B’ at which ¢ ,= e
Let the portion of @ exterior to B’ be denoted by B”. Because ¢ is continuous itls
value in B’ is either everywhere greater than ¢; or everywhere less than &1 fnr,the
sake of definiteness we suppose ¢ > ¢, in B, 'Thus, as we traverse any sufficiently
short atraight linc segment from any point of B' (within @) into R”, the function ¢
always inercases.  We may therefore choose the radius of € so small that {9¢/an) > 0
gt every point of its surface B* which is exterior to R'. Since (3¢/0n) = 0 at every
point of B* within B, it thus follows that

¢ ;
ff e das > 0, 64

B* N
7 '\. A

in econtradiction to (63),since V2 =0in Q. (H¢ < 4y in B the ineﬁﬁaﬁty in (64)
ia reversed. ) ~\ )

{e) Use (6:3) to prove that ¢, not identically constant, can assumGits mazimum and
minimum values only on the boundary B of any region Rin w}}ié’h‘v% = () throughout.
Proor: Supposc that ¢ assumes its maximum at any peint P of £ vot on B.  Con-
gtruct, with P as center, a spherical surface B in E having radius so smsll that
(@3p/on) = 0 everywhere on B’. Because of part (b)\\re eanmnot have (a¢/dn) =0
identically on B’ for all sufficiently small radius, ,\"\I‘hua (63) is contradicted. (The
argument against a minimum at P is similar.) 2NN/

(d) Use part {¢) to prove that, if v2¢ =@ throughout R and ¢ = constant on the
complete boundary B of B, then ¢ = coh:stant throughout E. Also, use 2(b} to
prove this result. AW

b. TUse exercise 4 to prove the folldwing sequence of faets concerning the potential
% in the region R bounded by the conducting surfaces of a condenser as describcd.in
the opening paragraph of 12-'1,@‘ That is, B is the region exterior to B, on which
¢ = ¢1, and interior to By, ohwhich ¢ = ¢s; ¢1 < 2 and V“qb’ =0in £,

(a) If ¢ = ¢, at any i%tt}rior point Py of R, then ¢1 < ¢ < ¢ Through any
such point P there p;as’ses 3 closed surface B} on which ¢ hag the; constant value ¢,.
B is everywhere intefior to Bz, and By is everywhere interior to B;. Hmr: On every
straight line SEgn{en't joining By to Bs the conbinuous function $ must assume the
value ¢, nt lepstlotice since ¢ < ¢y < ¢2. Lite. .

(&) For ,a\given value of &, there is but a single eclosed surface ¢ = ¢; 1
R (¢ < < ¢s). Hinr: Use exercise 4(b,d) to show, first, that there can be zo
surfaceng = constant in whose interior Bj does not tie, From 4(d), also conclude
t}m‘bjhé cxistence of two surfaces ¢ = 1, both of which enclose regions w}_uch confain
B)oecessitates a finite subregion of K throughout which & = é1, which is ruled out
by 4() and ¢, < ¢2. .

(c) From f':a.rts (@) and (p) conclude that there cxists & one—pa:rameter 'Ia.r.rl.ﬂ},&1 1?;
equipotential (constant-¢) surfaces, closed in R, with the following pl‘OEEItY’:I‘hese
surface ¢ = ¢, lies everywhere interior to the surface ¢ = &y if &1 < ¢z (
surfaces cannot have a point in common since ¢ is _Siﬂgle“’“l“efi') Show that

{d) Let 1 = F(4), where F'{¢) > 0in R and Flen = ¥u x‘(fi_’s) =u B Namely
u satisfies the requirement laid down in 12-1 (¢} for the funciion u(x,?r,z}. o su rfac(:.
u = ugon B; (b = 1,2); through each point of K there passes one and;:m_y Ulle o
of the family u(z,y,z) = 4 lyving entirely within &, such that w = A, 18 &Very

N . - ; A < Ax
interior to the region bounded by » = A, wheneves 1 . y from the existence of

Thus the existence of the required function follows direct]
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the petential function ¢;. the latter we tacitly sssume throughout (see 12-4), 1t
should be kept in mind, however, that it is not always & gimple matter to determine
the function u in spite of the highly arbitrary character of the function F{4); prior to
solution of the problem in which the use of u is required, the potentizl ¢ is not avail-
sble to us!

6. {a) Given the differentinble function u = w(x,y,2) with 2, ¥, # expressed in {erms
of the independent variables u, v, 1 through the differentiable relationships

r = zlupa), y = yl{up,w, 2 = z{u,vw), (65

derive the set of equations

1 = e -+ Uyl T sy,
0 = wy - Wty T ey, Ve {66)

0= Uzl + Uylic + Ul . p ,\’ \".\
by Use (66} to obtain the result A\ by
3ly,2) d(z,z) 25
it [a(va] g | e )] @
w ot [a<x,y,z) \]
a(u,u,w

with the denominator agsumed not to vanish ’fhus, through (63), equation (67}
provides the explicit expression of (uf + ul + zl’) in terms of {w,r, ), ns called for in
{(11) and (12),

{¢} On the hasis of (87) fill in the detaﬁs of the following proof that the function
H () defined by (12} is mclependent «,'jf the particular choice of the functions e, w
congistent with the requirements enugtiated in conjunction with equation (9):

Let % = v*{z,3,2) and w* = wMe,y,2) be a second choice of the functions v and w.
We thus form, according to (12)\

H* () = f [ Gk 4 + ) I
e 3y a(z,z) Hx,y) *
= [a(v* * ] + [6(9) ] + [B(v*,w*)] dw* d’f.-’* (ﬁs)
l 3(z,y,2) '
) wi* a(u,u*w*)
\~

Igt?%rv(a:,y,z) and w = wix,y,2) are the original choice of the required functions,
xpress {68} ag an integral over the variables v and w by means of the transformation
whose jacobian is fa{v*,w*}/3(r,w)].  With the aid of the reintions (see 2-8(/))

2(y,z)  dp*w*y a(y,z) du vt w*  av*,w®)
6(!) )wt) a(ﬁ,lﬂ) 3(1} ‘!D) ete., W = &{n,w) ' (69)

and
d(r,y,2) o(uptwty RACATAD
A p* w*) a(u v} a(u,v w)

together with (67), thus show that H*(u) = H(u) as given by (12).
{d) Prove the final relation of (89}
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7. (a) Show that the integral (8) may be written

1= [ / / (@)l + g +ui)dS%:— = [ o ([ f ‘g_:‘ d‘s)du, {70)
ul A Jé_ni i

4

where the surfuce A is a representative surface u = A in R (u; £ 4 £ w), The
partial derivative (du/dn) represents the rate of change of  along the normal to the
surfaces . = constant, FHINT: For the first form of {70) choose the volume element
dS dn and use the transfermation du = [(9u/an)|dn; for the second form use the fact
that the magnitnde \/ui + % -+ 4} of the gradient of 4 (see 2-12(a)) is the rate,of
change of « along the normal to & surface u = constant. The use of the absglute
velue of (Au/dn) makes immaterial the choice between inward or outward dotuial.
by Using (70), show that (12) becomes 7\

Ny

du . £
Haw) = ff r-a—n‘ ds. O an
4 RS
{¢) With {12) written in the form {71} the method ard réstlts of 12-1(c) become
applicable to cases in which it is no simple matter to writédn expression of the fune-
tion w explicitly in terms of z, v, 2. Thus, ¥ it i i{l}sﬁ convenient to define u in
geometric torms, the integral (71) may lend itselfgoyready evaluation while (12) may
not. O
For example, consider the case of the condgnéer formed by the concentric paraflel
cubes of edpe g, and @ (e; < a3}, We,(:léﬁne the family of surfaces 4 = constant
8a the aggregate of cubes concentric witk, and parallel to, the boundary cubes and
having edge lengths between g; and #as - On any given member of this family, having
edge 4, wo assign the constant validw = e
Show that, with this geometrie assignment of u, we have f(gu/an)| = 1, s that
svaluation of (71) gives Hiu). = 6a? = 24u?. Hence, with the aid of (16}, ghow that

the capacity €' of our chbicil condenser satisfies the inequality \
4 ;\ 5 Buste _ 3mes 0.95 G183 2
’\ = w{us — ) x{ge — a1) s —

7\ . ¢ :

{d) Use th}\hbbve method to ohtain an upper bound for the capacity C, of the smgl:
concluctor omisisting of the cube of side a1, but employ for the S‘fffa'cfs = consia n}
the pzl.i"all;é"l surfaces of the cube. (A given “parallel surface”” B of the cubica

sugfac _B; is a closed surface exterior to By such that the distance from any point of

3 . + ’ N
B\t\(’ B, along an internal normal to B’ is the same at a1l points of B, Thus B con.
and eight octants of a sphere;

sists of six squares, twelve quarter-circle eylinders, " ol to one
these twenty-six parts are joined smoothly. It is clear that any line norm _ :;1 N
of the parallel surfaces of & given cube is normal to all.) HINTE 1f we associate \.\nf n
given parallel surface a value of  equal to the perpendicular distance f}zom one t(,)o iB
plane portions to the center of the given cube, the constant norm:_a,l distance 0 ]1;
i8 (¥ — $a,) and {(8u/an)| = 1, so that H(), according to (71), is the area o

parallel surface:
H(y) = 6a® 4 bra{u — ¥ + dx(u — Foa)"

ANswer: O £ 0.7105a,, Compare with (72}, with g2 — =.
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8. Civen that the equipotential surfaces in & condenser consisting of two concentris

apheres are themselves spheres concentric with the conductors, derive the precige
expresgion for the petential according to the method cutlined in the antepenuliimate
paragrvaph of 12-1{¢}.
9, 8Show that the trapsformation (19) of 12-1(d} is such that each point of the
region B between the concentrie ellipsoids of revelution # = wy and u = u; i3 agsg-
ciated with one and only one triple of values (w2}, with ui S v 2w, 0 S v g o,
02w 2r

10. The procise capacity C‘; of the single conducting prolate spheroidal surface
given by (28), with b < a,is given by (see Abraham and Becker (referred to in 12-1(g}),

p. 64)
] '\/a’ — bt ] 4
© = gl + var= 5978 N Y

Expand the reciprocal of ¢ as & power series in (1 — (b/a)?), and compart, the resulf
with the similar expansion of (1/C") as given by (29). Thus prow dlrectly that
¢ z C,, and show that the aceuracy of approximation of by Y is the better
the smalier the value of [1 — (b/a)2].

11, {@) Show that the inequality (37) of 12.2{e) may be re“iv\ltten in the form

dr(ge ~ $)%Co = f [v%as - \f‘/\\a % as, 74)

with the aid of Green’s theorem (30) of 2 14 s.nd (34). Hint: Use the fact that
v =0in R,
() Use Green’s theorem (31) of 2- 14 te prme that

!fﬁdsz}!fg_gds-i-!!%dSno (75)

if % = Qin the region & b Lt{d:ea by the condenser surfzces H and B
{e) Since ¢ = ¢ 0n B; and’'¢ = ¢z on B: (¢2 > ¢1), rewrite (74) as

#

A\ %mhmm;ﬂ@w (76)
- 7 an

with the aid (75]

. {d) Tn caﬁ\vﬂ et y = @iUy (V2U, = D), use (42) and (75) fo rewrite (76) in the
orm
0\' ' 3

) 2
\ Cozg ————y 7T}
\ 4 ’ 4r(ly 4 Lo) (
where
d
oy = Z/% d8, ILz= ff Ula—a%ds (k = 1,2} {78)
t By

i2. () Use (77) and (78) of exercigse 11 to obtain a lower bound for the capatity Cs
of the cubical condenser deseribed in exercise 7(c). Hivt: Place the origin of coordi-
nates at the eenter of the condenser, with axes parallel to the euhe edges, and make the
choice of U: given by (44). By symmetry argument thus show that any integral of
(78) is equal to six times the integral carried out over one face of the cube. On the
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faco 2 = das of By, (0U1/3n) = —(8U/02);0n 2 = Jasof By, (3U/0n) = (al/oz).
Thus evaluate o

far flax dy dz
e Sy a9
ppy [ i dy dz 24 /3 '
L = 12m(—1) f‘;' L‘ A F P+ 9w (Dot 4/Z
{h =12).
ANsweER: Cp = .ﬁ.v{?_ (:;__17_2_ Hgafzal — 0.60 a:s:_agal; compare with the uppor-

hound result (72) and—for a; -+ »—with the upper bound for the single dube
ohtained in exereise 7{d). a

(8} Prove that it is not mere coincidence that the result (70) is idcnt.ica:l'\v@}h the
value of J+ found in (30}, HinT: Note {(75). ;:\

18. (@) Prove that the capacity per unit length coof & cylindrica}‘condenser, ag
described in 12-3%(a), is given by the maximum of (56) with respetct to functions &
which satisfy both (67) and (68). Hint: Compare 12-2(a). L&

() Develop the prineiple embodied in part {a) along the ]J'mesi‘} 12-2(a) and exercise

11 sbove Lo derive the result \
AN

2 ¢ { (80)
©F el + B
where here ' |
U oSN _ a1
Jg = fclggds, L*..—f‘ N aﬂds & =12, (81}
(82)

U=Uyy vU=0
{e} Use (80) fo obtain a lowér ﬁmnd to the capacity per unit length e of & cylindri-
el condenser whose tracedid thé zy plane consists of concentrie pz_ara-]}el squares of
sides @) and a., respectively (a1 < @), For the function U satisfying (82) use
log +/z% —}—3}—, where the origin of coordinates is the c(?mmc.m center of the ‘squares.
Hint: Do not try tovetaluate Ly or La individuaily as given o (81); the r_eqmre(t_sun;
(Ly + L}, howeyer\is readily evaluable. (Use polar coordinates for the integration,

ANBWER: NV
\\ Y 1 . (83)
\ ® 2 Fog (@r/an)
o) o -
(ms‘ShOW that result (83) applics also to & cyhfldx"lcal ci_mdenser whose trace In the
xy}lane consists of the pair of conecentric coaxial gimilar ellipses
@ ¥y BV @>a>0 (54)
@ e'a] ’ i a'e]
cylindrical eondenser whose trace

{¢) Prove that the result (83) applies to any
rdinates, by the

at the equality sige ho

i = mgiF

in the zy plane ie described, in plane polar o0 two equa.tlﬁin: ;n (83)5)( ii'
and r = a,g(8), with a» > a > 0. Show th
¢{0} is & constant. o
14. (a) Prove the inequality (69), where h(u) is given bY

12-1(¢}.

(60). HwT: Compare
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{b) Show that (60) may be written also in the form

o=

where ('is any curve 4 = constant as deseribed jn 12-3 {c). HiINT: Compare exercige
7{a,b} above.

{c) Employ (59) together with {60) to obtain an upper bound for the capacity
per unit length ¢ of the eylindrical condenser deseribed by (84).  Answen:

ds, (85)

g ldD) A
4o log (a./a;) N
O
Compare with the lower bound given by (83), 2% N
(@) Employ (59} together with (85) to obtain an upper hound for the capacity per
unit length ¢, for the concentrie-square eylindrieal condenser descr'ﬁ‘e&l]n exercise 13(c)

above, Hint: Compare the treatment given the cubical co dé}ser in exercise 7(c).

ANSWER: ¢y £ 2/[r log (a:/a1)]. Compare with the lower.b’c\»‘\ given by (83).

,\\\./
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Hilbert, D., viii, 171z., 311, 319
Homogeneous functions, Euler’s theorem
on, b
Hooke’s law, 203-204
Hydrogen atom, 271-275
energy levels, 275 .
spherieally symmetric wave funetions,
274

I

Ince, B. L, 99n., 121n., 124n., 125n., 319

Indeterminaey, principle of, 277

Integration by parts, & )

Tsoperimetric problems, 48-57, 65 ‘
two or more independent variables,

95, 133-134 _ ‘
also Eigenvalue-clgenfunctmn

(See
problems}

ki

Jackson, I, 127:4.,_319
bi, C. G. T, v )
T milton-Jacobi equation)

{See also Ha
Jasobian, 9-10, 136, 140-141, 203
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Kellog, O. D, 3., 206n., 311n., 319
Kent, G., viii
Kinetic energy, 73
of elastic deformation, 205
of vibrating bar, 218
of vibrating membrane, 143
of vibrating plate, 228
of vibrating string, 96
Kronecker delta, 101

L

Lagrange equations of motion, 75, 92
{See also Euler-Lagrange equations)
Lagrange multipliers, 6, 49, 63
{See alse Tsoperimetric problems)
Lagrangian, 74
Laguerre polynomials, 128~129, 274
Laplace's equation, 205, 309
Laplacian, 12
transformation of, 138-142
Least action, prmmple of, 85-88, 268 269
Legendre, A. M., vit &8
differential equatmn, 131 NN
Lemma, basic, 16-17, 43-44
Line intogral, 6, 7 AN
Linear independence, 8 , ¢\.)
Love, A. E. H,, 319 | "\

N
Maximum-fithithum characterization of
eigg%ﬁes (see Eigenvalue-eigen-
fugetion problems)
NIe.clmmcs {see Dynamies of particles;
\“Quantum mechanics)
lembra:r:le 142
(See afse Eigenvaluc-cigenfunction
problems; Vibrations)
Membrane system, definition of, 167
“narrower’’ relationship, 168
Minimum characterization of eigenvalues
(sve Eigenvalue-eigenfunction prob-
lems}
Mament, bending, 214-215, 250
of inertia (area), 214
Momenta, generalized, 76
Morse, P. M., 250,

CALCULUS OF VARIATIONS

N

Newton, L., 19, 74, 75
Normal derivative, 7-8, 11-12
Normalization, 99
(8ee alzo Eigenvalue-eigenfunction
problems}

O

Oplics, geometric {see Fermal’s prineiple)
Orthogonality, 101 A\
(See  alse Eigct1vuluc—ojgenfunctian
problemas; Schmidf Jprocess of
ort.hogomtlizn,timl)\

&N

Parametric repﬁg‘ent:uion, 336
Phase velodity, /266, 267, 209

of o partigle, 269
Piecewise, tontinuity, 4
Piecewise differentiability, 4
Pbark(k M., 271

o\ Plinck’s constant 262n., 27)

“Plate bending, by LoupI( 3, 22.1-228
by transverse-force distribution, 260
(See alse Eigenvalue-cipenfunction
problems; Vibrations)
Poiszon’s ratie, 203-204
Polys, G., 319
Potential, electrostatie, 204
minimum characterization,
312
Potential energy, 72, 89
of elastic deformation, 204, 212
bar bent by couples, 216-217
plaie bent by couples, 227-228
vibrating bar, 218
vibrating plate, 228
of electrostatic field, 205
of helium atom, 281
of many-eleciron atomn, 287
of one-electron atom, 272
of vibrating memhrane, 143--145
elastie hinding of edge, 148
of vibrating string, 96

Q

Cuantum mechudes, 261--293 ]
eompanison with classical mechnnics,
276 277

205, 311~
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Quantum mreelianies, redueed Hamilton-
Jacohi couation in, 262, 260, 277
(See  alser Figenyvalue-eigenfunction

probleres: Sehiridioger )
It

Radiation, 195, 271
Rayleigh, locd, J.
kIRt
Rayleigh-12itz method, 241a.
{(8ee Ritz nmethod)
Ritz, W., 211
Ritz method, 211
in electrostatics, 206
in ITariree methad, 286-200
for heliwin atom, 281-286
for vilwaling membrane, 188-192
for vibruting plate, 210-244
clamped square, 244-248
for vibrating string, 107-114
Rod (see 13ar bending)
Rope, hanging, 56—57, 64, 66

W N, 247n., 240n,

8 Al
Saint-Venant's principle, 21in. £
Sealar product, 12 . &\J
Schifi, L. 1., 319 L\

Schmidt process of or{bogonalization,
155-157 5
Schrodinger, E., 26\1-264, 268-270
mechanies-optiest/znalogy, 268-269
{See also Wave-functions)
Schrodinger egitation, for several parti-
cles, 237-280
forsingle particle, 263, 270
Mrst derivation, 262-263
second derivation, 268-270
Bchwartz’s inequality, 44
Schwinger, J., vii
Separation of variables, 98, 160-161
Snell’s law, 68
Sokolnikoff, T, 8., 201n., 204n., 217x., 319
Strain, 201-203
Strain tensor, 202-203
Stress tensor, 200-201
Btress vector, 200
String, elastic (see Eigenvalue-eigenfune-
tion problems; Vibrations)
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Sturm-Liouville problem, 119-181
singular cases, 127-130
Beasel functions, 129-130
Hermite equation, 131
Laguerre polynomials, 128-129
Legendre eqguation, 131
{See alse Eigenvalue-eigenfunction
problems)
Buriace forces, 169-200, 205
on cylindrical bar, 213
on rectangular plate, 225-226 N\
Surface integral, 11

Szegd, G., 319 O\
Bzegd, P., viil e\

T, N

R
Taylor's theoremi{for several variables,

10, 201-202
Thomson, G@:, 264, 270
Transforfation, canonical, 79-82
of Enier-Lagrange equation, 126-127
. %wo or three indepondent variahles,

A28 135-138

3 of laplacian, 138-142
of Hinear differential equation, 121-127
of multiple integral, 10
$o “normal, are coordinates,” 231-233
of Sturm-Liouville system, 121~127

U

Uncertainty principle, 277
Undetermined end points, 36-41, 51
Undetermined multipliers, i}

(See also Lagrange multipliers)

v

Veloeity components, generalized, T4

Vibrations, of bar, 217221

variable cross section, 252

of gas, 98

of membrane, 142-145
ciroular, 194
elastically held edge, 148153
free edge, 153
general solution, 158-160 "
inhomogeneous poundary conditions,

193
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Vibrations, of membrane, natural fre-
guencies, 146, 160
nodal lines, 196
rectanguiar, 161-164
under transverse force, 193
of plate, 228-236
cirenlar, 259260
general solution, 258
natural frequencies, 237, 248
rectangular, 240-249
under trangverse force, 260
of string, 95-98
general solution, 105-107
natural frequencies, 100
under transverse foree, 116-117
of uniform density, 117
in three dimengions, 297198
(8ee also Eigenvalue-eigenfunction
problems)

CALCULUS OF VARIATIONS

w

Wave equation, 264
for a particle, 270
time-independent, 265
{See also Sehrodinger)
Wave functions, 263
prhysical interpretation, 275-279
(See also Hydrogen atom)
Wave mechanics (see Quantum mechanies)
Wave phenomena in general, 2644268
Weierstrass, K., vii, 311 A
Weinstein, A., 247n. )
Weinstock, E. B., viii \)
Whlttaker E. T., 3194, \
Work, 90 \ }
of stretching, nym«brane 143-144
string, 96 N

\ Y
N
Young' s\modlﬂus 203
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